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Abstract

Unmodeled Dynamics in Robust Nonlinear Control

by

Murat Arcak

Since it is common to employ reduced models for control design, robustness to

unmodeled dynamics is a crucial design criterion. Recent advances in nonlinear con-

trol theory have led to a number of recursive design procedures for which applications

and extensions are being reported at an increasing rate. However, the robustness of

these designs in the presence of unmodeled dynamics has received very little attention.

The purpose of this dissertation is to develop systematic redesign procedures

that render nonlinear control laws robust against unmodeled dynamics. We consider

classes of unmodeled dynamics characterized by their structural properties such as

input-to-state stability, passivity, minimum phaseness, relative degree, and discuss

their destabilizing effects on closed-loop stability. Using recently developed nonlinear

feedback tools such as nonlinear small-gain theorems and feedback passivation, we

develop redesign methods for each class of unmodeled dynamics considered.

Part One of the dissertation presents robust redesigns under the assumption

that the full state of the plant is available for measurement. Our redesigns start with

nominal control laws such as those designed by backstepping and forwarding, and

robustify them to achieve global asymptotic stability in the presence of unmodeled

dynamics.

Part Two addresses output-feedback design issues and presents a new nonlinear

observer design. Compared to other areas of nonlinear control theory, progress in

nonlinear output-feedback design has been slower due to the absence of constructive

observer design methods. For systems with monotonic nonlinearities, we introduce

a new global observer design which results in a nonlinear observer error system rep-

resented as the feedback interconnection of a linear system and a time-varying mul-

tivariable sector nonlinearity. Using efficient numerical methods available for linear

matrix inequalities, observer gain matrices are computed to satisfy the circle criterion

and, hence, to drive the observer error to zero.

Due to the absence of a separation principle for nonlinear systems, the avail-

ability of an observer does not mean that it can be used for feedback control. We

discuss how the new observer can be incorporated in output-feedback design, and pro-

pose a small-gain method for output-feedback control design with robustness against

unmodeled dynamics. The design is illustrated on the jet engine compressor example.
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Chapter 1

Introduction

Nonlinear control theory has undergone a period of significant progress in the last

decade. The emergence of new analysis tools such as input-to-state stability, nonlinear

small-gain theorems, and the idea of rendering a system passive by feedback have lead

to systematic design procedures such as backstepping and forwarding. Although such

design methods are specialized for certain classes of systems, their extensions and

combined use enlarge their range of applicability. Nonlinear control methods have

already been successfully applied to the control of electrical motors, diesel engines,

ships, jet engine compressors, and are promising for emerging technologies such as

microelectromechanical systems.

The increasing demand for nonlinear control makes it necessary to improve the

practicality of design methods by studying the effects of system uncertainty, distur-

bances, incomplete and noisy state measurements. While efforts in this direction have

been successful in several specific problems including robustness against disturbances

and parametric uncertainties, progress in other areas has been slower.

The main purpose of this dissertation is to study the robustness of nonlinear

control methods in the presence of unmodeled dynamics. Because it is common to

employ low order models for control design, robustness to unmodeled dynamics is a

crucial design criterion. In general, a control design based on a nominal model fails

to achieve stabilization in the presence of unmodeled dynamics. We study classes of

nonlinear control laws such as those designed by backstepping and forwarding, and

develop systematic redesign procedures for their robustification against unmodeled

dynamics.

A common class of unmodeled dynamics are those that appear at the plant

input. Among this class, two types of unmodeled dynamics affect closed-loop stabil-

ity properties in fundamentally different ways and, hence, call for different redesign

strategies. The first type is relative degree zero and minimum phase unmodeled dy-
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namics. The second type consists of unmodeled dynamics that fail to meet at least

one of the relative degree zero and minimum phase conditions and, hence, exhibit

phase-lag at high frequencies. Although such “phase-lag” unmodeled dynamics are

common in actuators, most results in the literature only address relative degree zero

and minimum phase unmodeled dynamics. In this work we take a more ambitious

path and study both types.

The second part of the dissertation addresses problems in which only the plant

output is measured. Progress in nonlinear output-feedback control is hindered by two

obstacles. First, nonlinear observers are available only for very restrictive classes of

systems. Next, the availability of an observer does not imply that it can be used for

output-feedback control, because the separation principle does not hold. In this work

we introduce new tools for both observer design and observer-based control design.

For systems with monotonic nonlinearities, we introduce a new global observer

design which results in a nonlinear observer error system represented as the feedback

interconnection of a linear system and a time-varying multivariable sector nonlin-

earity. Using linear matrix inequality (LMI) software, observer gain matrices are

computed to satisfy the circle criterion and, hence, to drive the observer error to zero.

We discuss how the new observer can be incorporated in output-feedback design,

and propose a small-gain method for output-feedback control design with robustness

against unmodeled dynamics. The design is illustrated on the jet engine compressor

example.

As in most nonlinear designs, our results are applicable to classes of systems

characterized by their structural properties and types of nonlinearities. In contrast

to a single design methodology that encompasses all nonlinear systems of interest,

our approach offers the advantage of exploiting structural properties, and avoiding

conservative results. In this work we emphasize global designs, that is, designs for

the entire domain in which the system model is valid.

In Section 1.1 below, we review preliminary concepts that will be used through-

out the dissertation. Section 1.2 presents a preview of the main topics discussed in

the dissertation. Section 1.3 contains a list of notation and acronyms used in the

dissertation.
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1.1 Nonlinear Feedback Concepts

1.1.1 ISS Small-Gain Theorem

For systems with disturbances, a classical total stability concept is due to Malkin

[60], Krasovskii [49], and Hahn [23]. Sontag [86] replaced this concept with a more

useful concept of input-to-state stability (ISS). The system

ẋ = f(x,w) , f(0, 0) = 0 , (1.1)

where w is a disturbance input, is ISS if there exist a class-KL function β(·, ·) and a

class-K function γ(·) such that

|x(t)| ≤ max

{

β(|x(0)|, t) , γ
(

sup
0≤τ≤t

|w(τ)|
)}

. (1.2)

When the effect of the initial condition β vanishes as t→ ∞, the remaining term γ(·)
is a class-K ISS-gain of the system (1.1).

Sontag and Wang [88] showed that the ISS property is equivalent to the existence

of a positive definite and proper ISS-Lyapunov function V (x) such that

|x| ≥ ρ(|w|) ⇒ LfV (x,w) ≤ −σ(|x|) , (1.3)

where ρ(·) and σ(·) are class-K functions. With this ρ(·), the ISS-gain γ(·) in (1.2) is

the composition γ(·) = σ−1
1 ◦ σ2 ◦ ρ(·), where

σ1(|x|) ≤ V (x) ≤ σ2(|x|) . (1.4)

Further characterizations of the ISS property are presented by Sontag and Wang [89].

The concept of ISS gain led to a new version of the ISS small-gain theorem

by Jiang et al. [39], which includes the effect of initial conditions and represents an

extension of an earlier theorem by Mareels and Hill [61]. It is now illustrated on the

interconnected subsystems

ẋ1 = f1(x1, x2) , (1.5)

ẋ2 = f2(x2, x1) .

If the x1-subsystem with x2 as its input has ISS-gain γ1(·), and the x2-subsystem with

x1 as its input has ISS-gain γ2(·), then the interconnection is globally asymptotically

stable (GAS) if, for all s > 0,

γ1 ◦ γ2(s) < s , (1.6)

which is the ISS small-gain condition. Significant extensions and design applications

of the ISS small-gain theorem are given by Teel [93].
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1.1.2 Nonlinear Relative Degree and Zero Dynamics

The development of nonlinear geometric methods was a remarkable achievement

of the 1980’s, presented in the books by Isidori [25], Nijmeijer [67], Marino [63] and

in the numerous papers referenced therein. Here, we describe two geometric con-

cepts that will be used throughout the dissertation: nonlinear relative degree and

zero dynamics. These indispensable tools bring into focus the common input-output

structure of linear and nonlinear systems.

For the nonlinear system

ẋ = f(x) + g(x)u ,

y = h(x) + j(x)u , x ∈ IRn , u, y ∈ IR , (1.7)

the relative degree at a point x? is zero if j(x?) 6= 0, it is one if j(x?) is identically

zero on a neighborhood of x? and Lgh := ∂h
∂x
g(x) 6= 0 at x?. This is so because

ẏ =
∂h

∂x
ẋ = Lfh+ Lghu , (1.8)

so that, if Lgh is nonzero, then the input u(t) appears in the expression for the first

derivative ẏ(t) of the output y(t). If Lgh is zero, we can differentiate ẏ once more and

check whether u appears in the expression for ÿ(t), etc.

When the system (1.7) has relative degree one, its input-output linearization is

performed with the feedback transformation

u = (Lgh)
−1(v − Lfh) ⇒ ẏ = v , (1.9)

which cancels the nonlinearities in the ẏ-equation and converts it into ẏ = v. Selecting

new state coordinates in which y is one of the states, the remaining n− 1 equations

with y(t) ≡ 0 and v(t) ≡ 0 constitute the zero dynamics, that is, nonlinear dynamics

which remain when the output is kept at zero. If the relative degree is two, then

the linear part of the system is ÿ = v, the chain of two integrators. In this case the

zero dynamics are described by the remaining n − 2 equations y(t) = ẏ(t) ≡ 0 and

v(t) ≡ 0.

In minimum phase systems the zero dynamics are asymptotically stable. In

weakly minimum phase systems the zero dynamics are stable, but not asymptotically

stable.

1.1.3 Passivity and Feedback Passivation

Passivity, as a feedback concept, was first used by Popov [69, 70] in his frequency

domain solution to the absolute stability problem. Popov’s contribution led to various
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linear-nonlinear cascade systems

ẋ = f(x, ξ)

ξ̇ = Aξ +Bu , (1.12)

resulting from input-output linearization. The difficulty was that GAS of the subsys-

tem ẋ = f(x, 0) is not sufficient to achieve GAS of the whole cascade with ξ-feedback

u = Kξ alone. Thus, we need a feedback from both ξ and x, that is,

u = Kξ + v(x, ξ) . (1.13)

Such a control law was designed by Byrnes and Isidori [9] for the special case of (1.12)

with ξ̇ = Bu, where B is a square nonsingular matrix. Kokotović and Sussmann [47]

extended this design to feedback passivation where the main idea is to make the

cascade (1.12) appear as the feedback interconnection of the blocks H1 and H2 in

Figure 1.1. The final result in Figure 1.2 is arrived at in several steps. First, an

output η of the linear block H1 is selected to be the input of the nonlinear block H2,

that is, the x-subsystem of (1.12) is rewritten as

ẋ = f(x, 0) + g(x, ξ)η , (1.14)

where several choices of η = Cξ may be available. An output y is then chosen to render

(1.14) passive from η to y. If a Lyapunov function V (x) is known for ẋ = f(x, 0) so

that LfV < 0 for all x 6= 0, then y = LgV
T renders (1.14) passive because

V̇ = LfV + LgV η ≤ LgV η = yT η . (1.15)

Finally, if the linear block H1 is made PR by feedback Kξ, the passivity theorem will

be satisfied by closing the loop with −y as in Figure 1.2.

This means the nonlinear feedback term in the control law (1.13) is v(x, ξ) =

−y = −LgV
T . What remains to be done is to find K and P > 0 to satisfy the

Feedback PR Lemma

(A+BK)TP + P (A+BK) ≤ 0 ,

BTP = C . (1.16)

Kokotović and Sussmann [47] showed that an FPR solution exists if and only if the

minimal representation (A,B,C) is relative degree one and weakly minimum phase.

Saberi et al. [79] showed that the weak minimum phase property of (A,B,C) is

necessary unless some other restriction is imposed on the nonlinear part. An analysis
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As an illustration of small-gain redesigns proposed by Jiang et al. [73, 36, 39, 35,

34], Krstić et al. [54, 55], Praly and Wang [76], we let p(ξ, x, u) = u+ ξ, q(ξ, x, u) =

q(ξ, x), and assume that the unmodeled dynamics are ISS with x considered as the

input, that is,

|ξ(t)| ≤ max

{

β1(|ξ(0)|, t) , γ1

(

sup
0≤τ≤t

|x(τ)|
)}

. (1.18)

The nominal control law α(x) was designed for V (x), such that Lf+gαV := ∂V
∂x

(f(x)+

g(x)α(x)) < 0, ∀x 6= 0. We substitute p(ξ, x, u) = u+ ξ in (1.17)

ẋ = f(x) + g(x)[u + ξ] , (1.19)

and redesign the control law to assign an ISS-gain from ξ to x, that is,

|x(t)| ≤ max

{

β2(|x(0)|, t) , γ2

(

sup
0≤τ≤t

|ξ(τ)|
)}

. (1.20)

If γ2(·) is selected such that that γ1 ◦ γ2(s) < s , ∀s 6= 0, then the ISS small-gain

theorem of Teel et al. [39, 93] guarantees GAS of the closed-loop system. The redesign

of the control law is completed by a continuous approximation of the control law

u = α(x) − sgn(LgV (x))ρ(|x|) , (1.21)

where ρ(·) is determined from the desired ISS-gain γ2(·) and the Lyapunov function

V (x). The resulting feedback system can tolerate all unmodeled dynamics that satisfy

the ISS property (1.18), which represents its ISS-gain margin.

Small-gain redesigns for adaptive control were proposed by Jiang and Praly

[37, 38], Jiang and Hill [33], and Jiang [32].

An alternative redesign by passivation does not require that unmodeled dynam-

ics have bounded ISS-gain. Instead, the class of unmodeled dynamics is restricted

by a passivity requirement on the ξ-subsystem in (1.17) with u as the input and

v = p(ξ, x, u) as the output.

The passivation redesigns of Janković et al. [31], extended by Hamzi and Praly

[24], are based on V (x) as a control Lyapunov function (CLF) for the nominal system

ẋ = f(x) + g(x)u. For example, if V (x) has the property

LfV (x) < |LgV (x)|2 , ∀x 6= 0 , (1.22)

then the control law

u = −kLgV (x) , k ≥ 1 (1.23)

8



guarantees GAS not only for the nominal system, but also for all stable unmodeled

dynamics which satisfy the dissipativity condition

Ṡ(ξ) ≤ v u− 1

k
u2, (1.24)

where S(ξ) is a storage function. Thus, (1.24) represents a ‘stability margin’ for the

control law (1.23) because it defines a class of admissible unmodeled dynamics. This

stability margin is guaranteed if, for example, the control law in (1.23) is optimal with

the control penalty matrix R(x) = I because, then, the value function V (x) satisfies

(1.22). For the case when V (x) fails to satisfy (1.22), Janković et al. [31] construct a

new Ṽ (x) which recovers the same stability margin.

The first result in this dissertation, presented in Chapter 2, is a passivation

redesign of backstepping control laws for

χ̇ = Φ(χ) + Γ(χ)v (1.25)

ξ̇ = q(ξ, u) (1.26)

v = p(ξ, u) ,

which robustifies them against unmodeled dynamics described by the ξ-subsystem

(1.26). To preserve GAS in the presence of unmodeled dynamics satisfying (1.24), we

want the CLF V̄ (χ) to be as in (1.22). It was shown by Hamzi and Praly [24] that

(1.22) is equivalent to the existence of another CLF V (χ) such that

lim sup
χ→0

LΦV (χ)

(LΓV (χ)) 2
< l, (1.27)

for some l > 0. Then, using a positive scalar function θ(·) such that

limt→∞

∫ t

0
θ(s)ds = +∞, θ(V (χ)) >

LΦV (χ)

(LΓV (χ)) 2
, ∀χ 6= 0 , (1.28)

a redesigned V̄ (χ) which satisfies (1.22) is

V̄ (χ) =

∫ V (χ)

0
θ(s)ds. (1.29)

We derive conditions under which a CLF Vn(χ), constructed after n steps of backstep-

ping, will satisfy the above condition. As an illustration, such a CLF is constructed

for the system

Ẋ = X3 + x

ẋ = v

ξ̇ = −ξ + ξ3u (1.30)

v = ξ4 + u ,

9



with the unmodeled dynamics subsystem (1.30).

After two steps of backstepping we obtain the CLF

V2 =
1

2
X2 +

1

2
y2 , y = x+X +X3 , (1.31)

and using θ(V2) = 3 + 18V 2
2 , we redesign the control law to be

u = −3y − 9

2
(X2 + y2)2y. (1.32)

This control law achieves GAS for all unmodeled dynamics satisfying the dissipation

inequality (1.24) with k = 1, including (1.30).

For linear unmodeled dynamics we present a version of this redesign which

simplifies its applications to high order systems.

Another direction for achieving robustness against a wider class of unmodeled

dynamics is the dynamic nonlinear damping redesign presented in Chapter 3. This

redesign replaces passivity and small-gain restrictions by the less restrictive assump-

tion that the unmodeled dynamics subsystem is relative degree zero and minimum

phase. For the system (1.17), a nominal control law α(x) is redesigned to be

u = α(x) − κ(1 + |m(t)| + |α(x)|)LgV (x), κ > 0, (1.33)

where the signal |m(t)| constitutes an upper bound for the state of the unmodeled

dynamics. We prove that this redesign guarantees GAS for sufficiently large κ.

To illustrate the dynamic nonlinear damping redesign, we consider the system

ẋ = x2 + ∆(s)u , (1.34)

where the poles λi of the unmodeled dynamics ∆(s) satisfy Re{λi} ≤ −δ < 0. For

the nominal control law α(x) = −x− x2, the redesigned control law is

u = −x− x2 − κ(1 + |m| + |α|)x
ṁ = −δm+ |u| ,

which ensures that |m(t)| is an upper bound for the state ξ(t) of ∆(s).

The relative degree zero and minimum phase restrictions of the dynamic nor-

malization redesign are tight, as illustrated by the simulation results in Figure 1.3.

While the closed-loop system is GAS with the linear minimum phase unmodeled dy-

namics ∆1(s), the nonminimum phase ∆2(s) causes the closed-loop solutions to grow

unbounded.
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Figure 1.3: Closed-loop solutions for minimum phase ∆1(s) (left), and nonminimum
phase ∆2(s) (right).

1.2.2 Phase-Lag Unmodeled Dynamics

The redesigns discussed so far require that the unmodeled dynamics be relative

degree zero and minimum phase and, therefore, exclude several practically important

classes of unmodeled dynamics such as those due to actuators. The high-gain nature

of these redesigns results in reduced robustness to phase-lag unmodeled dynamics.

The problem of robustness against phase-lag unmodeled dynamics has received

insufficient attention in the nonlinear control literature. A singular perturbation

result by Sepulchre et al. [85, Theorem 3.18] shows that asymptotic stability can

be preserved with large regions of attraction if the unmodeled dynamics are much

faster than the nominal closed-loop system. For unmodeled dynamics with relative

degree greater than zero, Praly and Jiang [74] have designed a semiglobal control

law that incorporates a high-gain observer for the unmodeled dynamics. For the

single integrator ẋ = v, Zhang and Ioannou [105] have considered nonminimum phase

unmodeled dynamics and achieved global asymptotic stability using low-gain control

laws.

In Chapter 4, we achieve global asymptotic stability for a broader class of sys-

tems with phase-lag unmodeled dynamics. We study systems in feedforward form,

and redesign nested saturation control laws of Teel [92, 93].

We illustrate our result with a design for the system

ẋ2 = x1 + x2
1 + v2

ẋ1 = v + v2 , (1.35)

and test its robustness against the nonminimum phase unmodeled dynamics

v(s) =
−s+ 1

s2 + s+ 1
u(s) . (1.36)
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For the nominal system, that is for (1.35) with v = u, the nested saturation design of

Teel [92, 93] is applicable. With two saturation functions φi(s) = sgn(s)min{|s|, λi}
where λ1 = 0.5, λ2 = 0.05, and y1 = x1, y2 = x1 + x2, the nested saturation control

law is

u = −φ1(y1 + φ2(y2)) . (1.37)

This control law is not robust against the unmodeled dynamics (1.36): the solutions

of the closed-loop system (1.35), (1.36), (1.37) grow unbounded as shown in Figure

1.4. We redesign the control law (1.37) to be

u = −φ1(k1x1 + φ2(k2x2)) . (1.38)

With parameters λ1 = 0.5, k1 = 0.4, λ2 = 0.05, k2 = 0.02, designed according to

a small-gain procedure described in Chapter 4, the control law (1.38) renders the

closed-loop system GAS, as illustrated in Figure 1.5.
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Figure 1.4: Nominal design.
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Figure 1.5: Robust redesign.

The achieved robustness property is due to the low-gain design (1.38), which is

sufficient for stabilization of systems in feedforward form such as (1.35).

1.2.3 Output-Feedback Control

Compared with advances in other areas of nonlinear control theory, progress in

nonlinear output-feedback design has been slower. First, nonlinear observers are avail-

able only for very restrictive classes of systems. Second, unlike linear systems where

the separation principle allows output-feedback problems to be solved by combin-

ing state-feedback controllers with observers, the availability of a nonlinear observer
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does not imply that it can be used for output-feedback design because the separation

principle does not hold.

Global nonlinear observer designs in the literature severely restrict classes of

systems and nonlinearities. Early efforts by Thau [98], Kou et al. [48] and Banks

[3] restricted the state-dependent nonlinearities to be globally Lipschitz. Under this

restriction, quadratic Lyapunov functions have been used for observer design, with

various extensions by Tsinias [99], Yaz [103], Boyd et al. [7, Section 7.6], Raghavan

and Hedrick [77], Eker and Åström [14], and Rajamani [78].

For systems in which the nonlinearities appear as functions of the measured

output, the observer design is linear because the nonlinearity is canceled by an “output

injection” term. This class of systems has been characterized by Krener and Isidori

[50], Bestle and Zeitz [6], Besançon [5], and other authors. Output-injection observers

have been incorporated in observer-based control designs by Marino and Tomei [62,

63], Kanellakopoulos et al. [41, 53], Praly and Jiang [73], and, for stochastic nonlinear

systems, by Deng and Krstić [13, 51], and Arslan and Başar [1].

A broader class of systems is characterized by linear dependence on unmeasured

states. For this class, dynamic output-feedback designs have been proposed by Praly

[72], Pomet et al. [68], Marino and Tomei [63], Freeman and Kokotović [19], and

Praly and Kanellakopoulos [75].

The possibility to dominate the state dependent nonlinearities by linear high-

gain has recently been explored by Khalil and coworkers [15, 46]. While −kx cannot

dominate x3 globally, it can do so for as large |x| as desired, provided the gain k

is sufficiently large. To achieve this kind of “semiglobal” convergence, one must

avoid the destabilizing effect of the peaking phenomenon, analyzed by Sussmann and

Kokotović [91]. In Khalil’s high-gain observer, this is achieved with saturation of the

observer signals before they are fed to the controller. The high-gain observer has

been employed in semiglobal output-feedback designs by Teel and Praly [96], Lin and

Saberi [57], Lin and Qian [56], Praly and Jiang [74], and Isidori et al. [28]. The same

approach has been employed in adaptive control by Janković [29], Khalil [43], and in

the nonlinear servomechanism problem by Khalil et al. [42, 59, 45], and Isidori [26].

The idea of using a high-gain observer with saturation has led to the semiglobal

separation theorem of Teel and Praly [95], which states that global stabilizability by

state-feedback and uniform observability in the sense of Gauthier and Bornard [21]

imply semiglobal stabilizability by dynamic output feedback. Several extensions and

interpretations of this result have been presented by Atassi and Khalil [2], Isidori [27,

Section 12.3], and Battilotti [4].

Global high-gain observers have been designed by Gauthier et al. [20] under

13



a global Lipschitz condition - a common restriction in most global designs. In the

absence of such a restriction, global stabilization by output feedback may not be

possible, as shown by the counterexamples of Mazenc et al. [64].

1.2.4 A New Nonlinear Observer

In Chapter 5 we present an advance in observer design for systems with state-

dependent nonlinearities. In the new observer, global convergence is achieved without

high-gain. This advance is made under two restrictions which allow the observer error

system to satisfy the well known multivariable circle criterion. First, a linear matrix

inequality (LMI) is to be feasible, which implies a positive real property for the linear

part of the observer error system. The second restriction is that the nonlinearities be

nondecreasing functions of linear combinations of unmeasured states. This restriction

ensures that the vector time-varying nonlinearity in the observer error system satisfies

the sector condition of the circle criterion.

We illustrate the nonlinear observer design on the well known van der Pol oscil-

lator

ẋ1 = x2 , (1.39)

ẋ2 = −x1 + x2 −
1

3
x3

2 .

Our problem is to estimate x2 when only x1 is measured. The system nonlinearity

x3
2 which violates the global Lipschitz assumption depends on the unmeasured state.

The necessary output injection conditions of Krener and Isidori [50] are not satisfied

and, hence, none of the existing global observer design methods is applicable.

Our idea is to add a nonlinear injection term w3 in the observer

˙̂x1 = x̂2 + l1(x̂1 − x1) , (1.40)

˙̂x2 = −x1 + x̂2 + l2(x̂1 − x1) −
1

3
w3 ,

so that the observer error e := x− x̂ satisfies

ė1 = l1e1 + e2 , (1.41)

ė2 = l2e1 + e2 −
1

3
(x3

2 − w3) .

The task of the nonlinear injection term w3 is to counteract x3
2 and achieve conver-

gence of e(t) to zero. For w, we are free to construct any function from the available
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signals x1, x̂1, x̂2. For this construction, we use the Lyapunov function V = eTPe.

Its derivative along the observer error system (1.41) is

V̇ = eT



P

[

l1 1

l2 1

]

+

[

l1 1

l2 1

]T

P



 e− 2

3
eTP

[

0

1

]

(x3
2 − w3) . (1.42)

To render its quadratic part negative definite, we select P , l1, l2 such that

P

[

l1 1

l2 1

]

+

[

l1 1

l2 1

]T

P + νI ≤ 0 , (1.43)

for some positive constant ν. Then, we design w to render the remainder of (1.42)

nonpositive. Denoting

P =

[

p k

k m

]

, (1.44)

we see that w must guarantee (ke1 +me2)(x
3
2 −w3) ≥ 0 . To this end we employ the

inequality

(x2 − w)(x3
2 − w3) ≥ 0 ∀x2, w ∈ IR , (1.45)

which holds because x3
2 is a nondecreasing function of x2. In view of (1.45), we

construct w to satisfy

ke1 +me2 = x2 − w, (1.46)

so that

w = x2 −me2 − ke1 = (1 −m)x2 +mx̂2 + k(x̂1 − x1) . (1.47)

Since x2 is not available, we select m = 1 and obtain

w = x̂2 + k(x̂1 − x1) , (1.48)

which, substituted in the observer (1.40), yields V̇ < −ν|e|2. This guarantees that

e(t) → 0 exponentially, provided (1.43) can be satisfied with P > 0, constrained by

m = 1. We express this constraint as

P

[

0

1

]

=

[

p k

k m

] [

0

1

]

=

[

k

1

]

, (1.49)
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and combine it with (1.43) in the following matrix inequality:













P

[

l1 1

l2 1

]

+

[

l1 1

l2 1

]T

P + νI P

[

0

1

]

−
[

k

1

]

(

P

[

0

1

]

−
[

k

1

])T

0













≤ 0. (1.50)

This inequality is linear in P , P [ l1 l2]
T , ν and k. Its feasibility can be determined

numerically using the efficient LMI methods (see e.g. Boyd et al. [7]). If we set k = 0

in (1.48), that is, if we let w = x̂2, then the LMI is not feasible. With k 6= 0, the LMI

is feasible and a solution is

P =

[

6 −2

−2 1

]

, ν = 2, L =

[

l1

l2

]

=

[

−6

−16

]

, k = −2 . (1.51)

This shows that it is crucial for the nonlinear injection w to contain the output error

k(x̂1 − x1). The resulting nonlinear observer

˙̂x1 = x̂2 − 6(x̂1 − x1)

˙̂x2 = −x1 + x̂2 − 16(x̂1 − x1) −
1

3
(x̂2 − 2(x̂1 − x1))

3 , (1.52)

guarantees global convergence x̂(t) → x(t).

The constraint m = 1 imposed on P reveals that the nondecreasing property

of the nonlinearity x3
2 is not the only precondition for a successful design. The other

required property is revealed by rewriting the observer error system (1.41) as

ė =

[

l1 1

l2 1

]

e+

[

0

1

]

ϑ , ϑ := −1

3
(x3

2 − w3) , (1.53)

and considering

z := [ k 1 ] e = x2 − w (1.54)

as the output of the linear block. Then, (1.53)-(1.54) is represented by the block-

diagram in Figure 1.6. The key observation now is that the nondecreasing property

(1.45) implies that ϕ(t, z) := 1
3(x3

2 − w3) is a sector nonlinearity: zϕ(t, z) ≥ 0. This

provides a link with the well known circle criterion (see e.g. Khalil [44]), which

guarantees e(t) → 0 if the linear block is SPR. Indeed, (1.43) and (1.49) constitute

the required SPR condition.
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PDE model

φ̇ = −ψ +
3

2
φ+

1

2
− 1

2
(φ+ 1)3 − 3(φ + 1)R

ψ̇ =
1

β2
(φ+ 1 − u)

Ṙ = σR(−2φ− φ2 −R) , R(0) ≥ 0 ,

where φ and ψ are the deviations of the mass flow and the pressure rise from their set

points, the control input u is the flow through the throttle, and, σ and β are positive

constants.

Krstić et al. designed a state feedback GAS control law in [53, Section 2.4],

and later replaced it by a design using φ and ψ in [52]. With a high-gain observer,

Isidori [27, Section 12.7], and Maggiore and Passino [58], obtained a semiglobal result

using the measurement of ψ alone. With y = ψ, our design achieves GAS. The exact

observer cannot be designed because of the nonlinearities φR and φ2R. However,

the (φ, ψ)-subsystem (7.31),(7.32) contains the nondecreasing nonlinearity (φ + 1)3,

and we exploit this fact by treating the R-subsystem as unmodeled dynamics. The

small-gain assignment is then achieved via an observer-backstepping design.

1.3 Notation and Terminology

A function f : IRn → IRq is Ck if its partial derivatives exist and are continuous

up to order k, 1 ≤ k < ∞. A C0 function is continuous. A C∞ function is smooth,

that is, it has continuous partial derivatives of any order. The same notation is used

for vector fields.

A function σ : IR≥0 → IR≥0 is said to be class-K if it is continuous, increasing,

and σ(0) = 0. It is called class-K∞ if, in addition, limt→+∞σ(t) = +∞.

A function β : IR≥0 × IR≥0 → IR≥0 is said to be class-KL if for each t ∈ IR≥0,

β(·, t) is class-K and for each s ∈ IR≥0, β(s, ·) is decreasing and limt→+∞β(s, t) = 0.

A locally Lipschitz function φ(·) : IR → [−λ, λ] is called a saturation function

with saturation level λ > 0, if φ(x) = x when |x| ≤ λ/2, and

λ/2 ≤ sgn(x)φ(x) ≤ min{|x|, λ} (1.56)

when |x| ≥ λ/2. This definition incorporates the standard saturation function φ(x) =

sgn(x)min{|x|, λ}.
Given a vector field f : IRn → IRn and a differentiable scalar function λ : IRn →
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Table 1.1: List of acronyms.

CLF control Lyapunov function LES local exponential stability

GAS global asymptotic stability LMI linear matrix inequality

GES global exponential stability PR positive real

IOS input-to-output stability SPR strictly positive real

ISS input-to-state stability

IR, Lfλ denotes the directional derivative of λ along f :

Lfλ(x) =
∂λ

∂x
f(x). (1.57)

A smooth, positive definite and radially unbounded function V (x) is called a

control Lyapunov function (CLF) for the system ẋ = f(x) + g(x)u if, for all x 6= 0,

LgV (x) = 0 ⇒ LfV (x) < 0. (1.58)

Throughout the dissertation, | · | denotes the Euclidean norm. We say that a

measurable function u(t) is locally bounded if, for all T > 0, supt∈[0,T ] |u(t)| < ∞,

where sup stands for the essential supremum. For a locally bounded u(t), we define

the L∞ and asymptotic norms as

‖u‖∞ := sup
t≥0

|u(t)|, ‖u‖a := lim sup
t→∞

|u(t)|, (1.59)

respectively.

Table 1.1 contains a list of acronyms used throughout the dissertation.
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Robust Redesigns Against

Unmodeled Dynamics
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Chapter 2

Robustification of Backstepping

In this chapter we redesign backstepping schemes such as those in Kanellakopou-

los et al. [41], and Krstić et al. [53], to robustify them against input unmodeled

dynamics. We consider systems of the form

Ẋ = F (X) +G(X)x1

ẋ1 = f1(X,x1) + g1(X,x1)x2

ẋ2 = f2(X,x1, x2) + g2(X,x1, x2)x3 (2.1)

... =
...

ẋn = fn(X,x) + gn(X,x)v

ξ̇ = q(ξ, u) (2.2)

v = p(ξ, u),

where |gi(X, ..., xi)| ≥ g0 > 0, ∀(X, ..., xi) ∈ IRr+i, i = 1, · · · , n. The ξ-subsystem

(2.2) with input u ∈ IR and output v ∈ IR represents unmodeled dynamics, that is,

(2.1) with v = u is the nominal system. When u = 0, the system (2.1),(2.2) has an

equilibrium at zero, whose stability properties are to be analyzed.

For the X-subsystem with x1 viewed as a virtual control input, a CLF V0(X)

and a control law Λ0(X), Λ0(0) = 0, are known such that, for all X 6= 0,

LF+GΛ0V0(X) :=
∂V0

∂X
(F +GΛ0) = −U0(X) < 0 . (2.3)

With the knowledge of V0(X) and Λ0(X), backstepping can be applied to guarantee

GAS for the nominal system. However, a GAS control law for the nominal system does

not guarantee GAS in the presence of unmodeled dynamics. To robustify backstepping

designs, we propose two redesign methods: passivation and truncated passivation. In

the first redesign we use the results of Hamzi and Praly [24], and ensure GAS via the
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passivity properties of the closed-loop system. In the second redesign we passivate

the X-subsystem, and proceed with backstepping. For both redesigns the unmodeled

dynamics subsystem (2.2) is restricted to be minimum phase and relative degree zero.

In Section 2.1 we review the two main versions of backstepping: cancelation

backstepping and LGV -backstepping. In Sections 2.2 and 2.3, we present the two

redesigns. V0(X), Λ0(X), and the system (2.1), (2.2) are assumed to be sufficiently

smooth.

2.1 Cancelation and LGV -Backstepping

Backstepping design starts with the virtual control law Λ0(X) designed for the X-

subsystem as in (2.3). By adding −η0LGV0(X) to Λ0(X) we obtain the virtual control

law

Λ(X) = Λ0(X) − η0LGV0(X), η0 ≥ 0, (2.4)

which, when η0 > 0, increases the negativity of LF+GΛV0(X). With the error variable

y1 := x1 − Λ(X), the (X,x1)-subsystem driven by x2 is

Ẋ = (F +GΛ)(X) +G(X)y1 (2.5)

ẏ1 = f1(X,x1) − Λ̇(X, y1) + g1(X,x1)x2, (2.6)

where Λ̇(X, y1) is explicitly known from (2.4) and (2.5).

Step 1. To find a virtual control law α0
1(X,x1) for the (X,x1)-subsystem, we

introduce the CLF

V1(X,x1) := V0(X) +
1

2µ1
y2
1, (2.7)

where µ1 > 0 is to be specified. Its time derivative along (2.5) and (2.6) is

V̇1(X,x1) ≤ −U0(X) − η0(LGV0(X))2 + LGV0(X)y1

+
1

µ1
y1

(

f1(X,x1) − Λ̇(X, y1) + g1(X,x1)x2

)

. (2.8)

Our aim is to select x2 = α0
1(X,x1) that renders V̇1 negative definite. Using

−η0(LGV0(X))2 + LGV0(X)y1 ≤ 1

4η0
y2
1, (2.9)

we obtain

V̇1(X,x1) ≤ −U0(X) +
1

4η0
y2
1 +

1

µ1
y1

(

f1(X,x1) − Λ̇(X, y1) + g1(X,x1)x2

)

, (2.10)
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which suggest the virtual control law

α0
1(X,x1) =

1

g1(X,x1)

[

−k1y1 − f1(X,x1) + Λ̇(X, y1)
]

, k1 > 0. (2.11)

Then, x2 = α0
1(X,x1) yields

V̇1(X,x1) ≤ −U0(X) +

(

1

4η0
− k1

µ1

)

y2
1. (2.12)

Setting 0 < µ1 < 4k1η0, we guarantee that V̇1(X,x1) is negative definite.

We refer to this design as LGV -backstepping because the sign-indefinite term

LGV0(X)y1 in (2.8) is dominated by adding −η0LGV0(X) to the previous virtual

control law Λ0(X). In cancelation backstepping we keep the control law Λ(X) =

Λ0(X) by setting η0 = 0 in (2.4). In this case, the LGV0(X)y1 term in (2.8) must be

canceled by α0
1(X,x1). A virtual control law incorporating both types of backstepping

is

α0
1(X,x1) =

1

g1(X,x1)
[−k1y1 − λ1LGV0(X) − f1(X,x1) + Λ̇(X, y1)], (2.13)

where, for cancelation backstepping, λ1 > 0 and µ1 = λ1 in (2.7). If η0 > 0, we

recover the LGV -backstepping control law (2.11) with λ1 = 0.

For the (X, y1)-subsystem (2.5),(2.6) driven by x2, the input vector field is given

by [0 , g1(X,x1)]
T . Differentiating (2.7) along this vector field, the counterpart of

LGV0(X) for the X-subsystem is g1(X,x1)y1. Then, as in (2.4), we introduce the

virtual control

α1(X,x1) = α0
1(X,x1) − η1g1(X,x1)y1, η1 ≥ 0, (2.14)

which enables us to avoid a cancelation in the next step, and define the error variable

y2 := x2 − α1(X,x1).

Step i. (i = 2, · · · , n) We take the CLF

Vi(X,x1, ..., xi) = V0(X) +
1

2µ1
y2
1 + ... +

1

2µi
y2

i , (2.15)

where µi > 0 is to be specified. With ki > 0, calculations similar to Step 1 yield the

virtual control law

α0
i (X, ..., xi) =

1

gi(X, ..., xi)
[−kiyi − fi(X, ..., xi)

+α̇i−1(X, ..., yi) − λigi−1(X, ..., xi−1)yi−1], (2.16)
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where λi > 0 in cancelation backstepping, while ηi−1 > 0 and λi = 0 in LGV -

backstepping. By selecting µi = λiµi−1 in the first, and, 0 < µi < 4kiηi−1 in the

second case, V̇i(X,x1, ..., xi) is rendered negative definite. For i < n, we define

αi(X, ..., xi) := α0
i (X, ..., xi) − ηigi(X, ..., xi)yi, ηi ≥ 0,

and the next error variable yi+1 := xi+1 − αi(X, ..., xi).

This procedure results in the CLF

Vn(X,x) = V0(X) +
1

2µ1
y2
1 + ... +

1

2µn
y2

n, (2.17)

and the control law

u = αn(X,x) =
1

gn(X,x)
[−knyn − fn(X,x) (2.18)

+α̇n−1(X, y1, ..., yn−1) − λngn−1(X, ..., xn−1)yn−1],

which renders V̇n(X,x1, ..., xn) negative definite, thus achieving GAS for the nominal

system.

2.2 Passivation Redesign

In this section we consider input strictly passive unmodeled dynamics, charac-

terized by a constant δ > 0 and a positive definite, radially unbounded function S(ξ)

such that

Ṡ(ξ) ≤ −δu2 + v u. (2.19)

For linear unmodeled dynamics v = ∆(s)u, this means

Re{∆(jω)} ≥ δ, ∀ω ∈ IR. (2.20)

In compact notation, the system (2.1),(2.2) is

χ̇ = Φ(χ) + Γ(χ)v (2.21)

ξ̇ = q(ξ, u) (2.22)

v = p(ξ, u),

where

χ := [XT , xT ]T

Φ(χ) := [F (X) +G(X)x1, · · · , fn(X,x)]T

Γ(χ) := [0, · · · , gn(X,x))]T .

The passivation redesign makes use of the following lemma:
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Lemma 2.1 Consider the system (2.21),(2.22), and suppose that the ξ-subsystem

satisfies (2.19) with δ > 0, and is GAS when u = 0. If there exists a positive definite

and radially unbounded function V̄ (χ) such that, for all χ ∈ IRr+n − {0},

LΦV̄ (χ) < (LΓV̄ (χ))2, (2.23)

then the control law

u = −kLΓV̄ (χ), k ≥ 1

δ
, (2.24)

guarantees GAS.

Proof: With the control law (2.24), we view the closed-loop system as the feedback

interconnection of the subsystems (2.21) and (2.22), and examine the passivity prop-

erties of each subsystem. For (2.21), we use kV̄ (χ) as a storage function, and denote

β(χ) := (LΓV̄ (χ))2 − LΦV̄ (χ) > 0, ∀χ 6= 0. Substituting (2.24), we obtain

k ˙̄V (χ) =
1

k
u2 − uv − kβ(χ). (2.25)

Adding (2.19) and (2.25), we get

k ˙̄V (χ) + Ṡ(ξ) ≤ −(δ − 1

k
)u2 − kβ(χ) ≤ −kβ(χ), (2.26)

which establishes global stability of the closed-loop system (2.21),(2.22) with (2.24).

It also follows from (2.26) that χ→ 0. Since u = 0 when χ = 0, and the ξ-subsystem

is GAS, we conclude from LaSalle’s invariance principle that ξ → 0, and hence, the

closed-loop system is GAS.
�

The existence of a function satisfying (2.23) for general nonlinear systems has

been shown by Hamzi and Praly [24] to be equivalent to the existence of a CLF V (χ)

and a constant l > 0 such that

lim sup
χ→0

LΦV (χ)

(LΓV (χ)) 2
< l. (2.27)

Under this local condition, a continuous, positive definite function θ : IR≥0 → IR≥0

exists such that

θ(V (χ)) >
LΦV (χ)

(LΓV (χ)) 2
, ∀χ ∈ IRr+n − {0}, (2.28)

limt→∞

∫ t

0
θ(s)ds = +∞. (2.29)
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Then, it can be verified that

V̄ (χ) =

∫ V (χ)

0
θ(s)ds (2.30)

is a positive definite and radially unbounded function which satisfies (2.23). It is

therefore useful to determine when a CLF V (χ) will satisfy (2.27).

Lemma 2.2 Let P :=
[

∂2V
∂χ2

]

χ=0
. If 1

2χ
TPχ is a CLF for the Jacobian linearization

of (2.21), then V (χ) satisfies (2.27).
�

We now show when this will be the case for Vn(χ) constructed by backstepping.

Theorem 2.1 Consider the system (2.21)-(2.22), and suppose that the ξ-subsystem

satisfies (2.19) with δ > 0, and is GAS when u = 0. If

P0 =

[

∂2V0

∂X2

]

X=0

and Q0 =

[

∂2U0

∂X2

]

X=0

(2.31)

in (2.3) are both positive definite, then there exists a positive definite function V̄ (χ)

such that the control law

u = −kLΓV̄ (χ), k ≥ 1

δ
, (2.32)

renders the closed-loop system GAS.

Proof: With the procedure of Section 2.1 applied to (2.21), the quadratic part of

Vn(χ) in (2.17)
1

2
XTP0X +

1

2µ1
y2
1 + · · · + 1

2µn
y2

n

is a CLF for the Jacobian linearization of (2.21). It follows from Lemma 2.2 and

the preceding discussion that there exists a positive definite and radially unbounded

V̄ (χ) =
∫ Vn(χ)
0 θ(s)ds which satisfies (2.23). Then, by Lemma 2.1, (2.32) achieves

GAS.
�

Substituting LΓV̄ = θ(Vn) 1
µn
gn(X,x)yn in (2.32), the redesigned control law is

u =
−k
µn

θ(Vn)gn(X,x)yn, k ≥ 1

δ
, (2.33)

where θ : IR≥0 → IR≥0 is a continuous, positive definite function that satisfies (2.28)

and (2.29). It is important to note that this redesign does not require detailed in-

formation about the unmodeled dynamics, only a lower bound on δ is assumed to be

known.
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Example 2.1 Consider the system with linear unmodeled dynamics ∆(s):

Ẋ = X3 + x

ẋ = v (2.34)

v =
12(s+ 35)(s+ 20)

7(s+ 40)(s + 30)
u = ∆(s)u,

Since Re{∆(jω)} ≥ 1, ∆(s) satisfies (2.19) with δ = 1. Using the virtual control

Λ0(X) = −X −X3 for the X-subsystem, we see that (2.3) is satisfied with V0(X) =
1
2X

2, U0(X) = X2, that is, P0 = 1, Q0 = 2 in (2.31). We define the error variable

y = x + X + X3 and set µ1 = 1 in (2.17), that is, V2(X,x) = 1
2X

2 + 1
2y

2. In the

(X, y)-coordinates the system is

Ẋ = −X + y

ẏ = (1 + 3X2)(−X + y) + v, (2.35)

and, hence,

LΦV2(X, y) = −X2 − 3X3y + (1 + 3X2)y2

LΓV2(X, y) = y. (2.36)

We now need to find a continuous function θ(V2) such that

θ(V2) >
LΦV2(X, y)

(LΓV2(X, y))2
= 1 + 3X2 +X2

(−3X

y
− 1

y2

)

.

Using the inequality
r

y
− 1

y2
≤ r2

4
, ∀y ∈ IR,

we obtain, upon completion of the squares,

LΦV2(X, y)

(LΓV2(X, y))2
≤ 1 + 3X2 +

9

4
X4 < 3 + 18V2(X, y)

2.

Choosing θ(s) = 3 + 18s2, k = 1
δ

= 1, and substituting in (2.33), we obtain the

redesigned control law

u = −3y − 9

2
(X2 + y2)2y, (2.37)

which achieves GAS.
�
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2.3 Truncated Passivation Redesign

For higher order systems the task of finding the function θ(·) may be cumber-

some. We now circumvent this difficulty by a ‘truncated’ design in which we passivate

the X-subsystem only, and then apply backstepping to the redesigned virtual control

law.

For the Jacobian linearization of the X-subsystem, 1
2X

TP0X is a CLF, provided

P0 and Q0 defined in (2.31) are positive definite. Therefore, we conclude from Lemma

2.2 that there exists a positive definite and radially unbounded function V̄0(X) that

satisfies

LF V̄0(X) < LGV̄0(X)2, ∀X ∈ IRr − {0}. (2.38)

Then, the virtual control law

Λ(X) = −k0LGV̄0(X), k0 ≥ 1, (2.39)

renders ˙̄V 0(X) = LF V̄0(X) + LGV̄0(X)Λ(X) negative definite.

To make the main features of the truncated passivation redesign more apparent,

we present it for the special case of (2.1) in which the X-subsystem is augmented by

a chain of n integrators, and the unmodeled dynamics are linear:

Ẋ = F (X) +G(X)x1

ẋ1 = x2

ẋ2 = x3 (2.40)

... =
...

ẋn = ∆(s)u.

For this subclass, the sequence of the virtual control laws obtained via LGV -backstepping

is

α1 = −k1(x1 − Λ) + Λ̇

α2 = −k2(x2 − α1) + α̇1

... =
...

αn = −kn(xn − αn−1) + α̇n−1, (2.41)

where ki > 0, i = 1, 2, · · · , n, and Λ is as in (2.39).
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To represent the closed-loop system as the feedback interconnection of a linear

and a nonlinear subsystem, we write the ẋn-equation of (2.40) with u = αn in the

Laplace domain as

sxn = ∆(s)[−kn(xn − αn−1) + sαn−1], (2.42)

which yields

xn =
(s+ kn)∆(s)

s+ kn∆(s)
αn−1 =: ∆̃1(s)αn−1. (2.43)

Next, we substitute xn = sxn−1 and αn−1 = −kn−1xn−1 + (s+ kn−1)αn−2 in (2.43),

and obtain

xn−1 =
(s+ kn−1)∆̃1(s)

s+ kn−1∆̃1(s)
αn−2 =: ∆̃2(s)αn−2. (2.44)

Proceeding recursively, we get

x1 = ∆̃n(s)Λ(X), (2.45)

where ∆̃n(s) is obtained from

∆̃0(s) := ∆(s)

∆̃i(s) :=
(s+ kn−i+1) ∆̃i−1(s)

s+ kn−i+1∆̃i−1(s)
, i = 1, · · · , n. (2.46)

Thus, the closed-loop system (2.40)-(2.41) is

Ẋ = F (X) +G(X)x1 (2.47)

x1 = ∆̃n(s)Λ(X).

Because Λ(X) in (2.39) is in LGV -form, we can use Lemma 2.1 to prove the following

stability margin:

Lemma 2.3 The closed-loop system (2.47) is GAS for all stable ∆̃n(jω) that satisfy

Re{∆̃n(jω)} ≥ 1

k0
, ∀ω ∈ IR. (2.48)

�

Our final result shows how the design parameters are to be selected to satisfy

(2.48).
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Theorem 2.2 Consider the system (2.40), with a controller designed according to

(2.39) and (2.41). Suppose that ∆(s) is minimum phase and relative degree zero,

with high-frequency gain

h := lim
ω→∞

∆(jω) > 0.

If we select k0 > max{1, 1
h
}, and ki > 0, i = 1, · · · , n − 1, then there exists k? > 0

such that kn ≥ k? guarantees GAS for the closed-loop system.

Proof: From (2.46), ∆̃n−1(s) is minimum phase, relative degree zero and its high-

frequency gain is h > 0. This implies that

∆̃n(s) =
(s+ k1) ∆̃n−1(s)

s+ k1∆̃n−1(s)
(2.49)

is stable for sufficiently large k1 > 0, as verified from a root-locus argument. Next, it

can be shown from (2.49) that, as k1 is increased, the Nyquist plot of ∆̃n(s) converges

to that of h(s+1)
s+h

, which is a circle that intersects the real axis at 1 and h. Since
1
k0

< min{1, h}, (2.48) is satisfied if k1 is selected sufficiently large. Thus, GAS

follows from Lemma 2.3.
�

Example 2.2 For the system of Example 2.1, we now perform the passivation re-

design for the X-subsystem only, and then apply backstepping. A redesigned control

law for the X-subsystem is Λ(X) = −2k0X
3. Then, the LGV -backstepping control law

u = −k1(x+ 2k0X
3) − 6k0X

2(X3 + x), (2.50)

achieves GAS for the nominal model. To guarantee GAS with ∆(s), we note that

h = 1, and choose k0 > 1. Then, by Theorem 2.2, the closed-loop system (2.34),(2.50)

is GAS for sufficiently large k1 > 0.
�

2.4 Summary

We have presented two passivation redesigns of backstepping which achieve

global asymptotic stability for a class of minimum phase unmodeled dynamics with

relative degree zero. The redesigns do not require detailed information about the

unmodeled dynamics: the class of admissible unmodeled dynamics are characterized

by their passivity properties in the first redesign, and their high-frequency gains in

the second redesign. Our analysis provides insight into the robustness properties of

backstepping designs.
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Chapter 3

Dynamic Nonlinear Damping Redesign

The redesigns presented so far restrict the unmodeled dynamics by small-gain

or passivity conditions. The dynamic nonlinear damping redesign presented in this

chapter removes these restrictions. Instead, the main restriction is that the unmod-

eled dynamics subsystem be relative degree zero and minimum phase. For nonlinear

unmodeled dynamics, the minimum phase requirement is replaced by a robust stabil-

ity property of the zero dynamics. Our control law employs a dynamic normalization

signal to counteract the destabilizing effect of the unmodeled dynamics.

A practical feature of this redesign is that it does not require detailed information

about the unmodeled dynamics subsystem, only the rate of exponential convergence

and the sign of the high-frequency gain are assumed to be known. The closed-loop

solutions are bounded, and converge to a compact set which can be made arbitrarily

small by increasing the controller gain. If the Jacobian linearization of the zero dy-

namics is asymptotically stable, then the redesign recovers global asymptotic stability

and local exponential stability (LES).

In Section 3.1 we introduce the class of systems to be studied, and characterize

the admissible unmodeled dynamics. In Section 3.2, we present our redesign and

illustrate it on an analytical example. The proofs are given in Section 3.3.

3.1 Problem Statement

We consider the system

Ẋ = F (X,x) (3.1)

ẋ = f(X,x) + g(X,x)v (3.2)

ξ̇ = A(ξ) +Bu (3.3)

v = c(ξ) + du, (3.4)
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in which X ∈ IRn, x ∈ IR, ξ ∈ IRm, and |g(X,x)| ≥ g0 > 0 for all (X,x) ∈ IRn+1. The

ξ-subsystem with input u ∈ IR and output v ∈ IR represents unmodeled dynamics,

that is, the (X,x)-subsystem with v = u is the nominal system. It is assumed that all

functions in (3.1)-(3.4) are C1, and F (·, ·), f(·, ·), A(·) and c(·) vanish at zero. The

stability properties analyzed are with respect to zero, which is an equilibrium for the

system (3.1)-(3.4) when u = 0.

The main restriction on the nominal system is that the X-subsystem be globally

stabilizable with x viewed as a virtual control input.

Assumption 3.1 There exists a C1 function µ(X) such that

Ẋ = F (X,µ(X)) (3.5)

is globally asymptotically stable.

We will consider nominal control laws that guarantee an ISS property for the X-

subsystem. Our redesign will render such control laws robust against the destabilizing

effect of the unmodeled dynamics.

For nominal control laws we employ a backstepping procedure which relies on

the following fact proved by Sontag [87] (see also Isidori [27, Theorem 10.4.3]):

Proposition 3.1 If µ(X) is as in Assumption 3.1, then there exists a C 1 function

0 < β(X) ≤ 1 that renders

Ẋ = F (X,µ(X) + β(X)y) (3.6)

ISS with input y.
�

To proceed with the backstepping design, we note that the variable y := (x −
µ(X))/β(X) is governed by

ẏ = f̃(X,x) + g̃(X,x)v, (3.7)

where |g̃(X,x)| = |g(X,x)|
β(X) ≥ g0. Then, for the nominal system (3.1)-(3.2) with v = u,

the control law

u = α(X,x) =
1

g̃(X,x)

(

−f̃(X,x) − ky
)

, k > 0 , (3.8)

results in ẏ = −ky, and guarantees GAS because of the ISS property of (3.6).

The admissible unmodeled dynamics are characterized by the following assump-

tions:
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Assumption 3.2 The unmodeled dynamics subsystem (3.3)-(3.4) has relative degree

zero, that is d 6= 0.

Assumption 3.3 There exists a constant c̄ > 0 such that |c(ξ)| ≤ c̄ |ξ|.

Assumption 3.4 There exists a C1 Lyapunov function V (ξ) such that

v1|ξ|2 ≤ V (ξ) ≤ v2|ξ|2 (3.9)

∂V

∂ξ
A(ξ) ≤ −2δV (ξ) (3.10)

∣

∣

∣

∣

∂V

∂ξ

∣

∣

∣

∣

≤ v3|ξ|, (3.11)

where δ, v1, v2, v3 are positive constants.
�

The constant c̄ and the Lyapunov function V (ξ) serve only to define the class

of unmodeled dynamics. Their knowledge is not required for the redesign. By As-

sumption 3.4, if u = 0, then the unmodeled dynamics (3.3) are globally exponentially

stable (GES) with the convergence rate δ. The converse of this statement is also true

if A(ξ) is globally Lipschitz, because, if the unmodeled dynamics subsystem is GES,

then there exists1 a V (ξ) as in Assumption 3.4.

The final assumption requires a robust stability property for the zero dynamics

of the subsystem (3.3)-(3.4), that is

ż = A(z) − 1

d
B c(z) =: A0(z). (3.12)

Assumption 3.5 The zero dynamics subsystem (3.12) disturbed by d1 and d2

ż = A0(z + d1) + d2 (3.13)

is ISS with input (d1, d2).
�

For linear unmodeled dynamics A(ξ) = Aξ, c(ξ) = Cξ, Assumptions 3.4 and 3.5

are satisfied if the matrices A and A0 := A − 1
d
BC are both Hurwitz. This means

that all relative degree zero, stable, and minimum phase linear unmodeled dynamics

are admissible.

1See Khalil [44, Theorem 3.12], and its recent extension by Corless and Glielmo [12] which guar-
antees the same convergence rate for V (ξ(t)) as for ξ(t).
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3.2 Dynamic Nonlinear Damping Redesign

Using α(X,x) as in (3.8), the control law for system (3.1)-(3.4) is

u = sgn(d)[α(X,x) − κ (1 + |m| + |α(X,x)|) g̃(X,x)y] , κ > 0 (3.14)

ṁ = −δm+ |u|, (3.15)

which only requires the knowledge of δ and the sign of d. Applying (3.14) to (3.1)-

(3.4), we obtain the closed-loop system

Ẋ = F (X,µ(X) + β(X)y) (3.16)

ẏ = f̃(X,x) (3.17)

+g̃(X,x){c(ξ) + |d| [α(X,x) − κ(1 + |m| + |α(X,x)|) g̃(X,x)y]}
ξ̇ = A(ξ) +Bu . (3.18)

Adding and subtracting (3.8), we rewrite (3.17) as

ẏ = −ky + g̃(X,x)[c(ξ) + (|d| − 1)α(X,x) − κ|d|(1 + |m| + |α(X,x)|) g̃(X,x)y].
(3.19)

The three robustification terms in −κ(1+ |m|+ |α(X,x)|) g̃(X,x)y counteract the un-

modeled terms c(ξ) and (|d|−1)α(X,x) in (3.19). In particular, −κ |α(X,x)| g̃(X,x)y
counteracts (|d| − 1)α(X,x), and can be dropped if |d| = 1. The remaining terms

−κ g̃(X,x)y and −κ |m| g̃(X,x)y counteract c(ξ), as we illustrate with the help of the

following lemma:

Lemma 3.1 Consider equations (3.15) and (3.18), and suppose u(t) ∈ L∞[0, T ]. If

Assumption 3.4 holds, then there exist constants θ1, θ2 > 0 such that, for all t ∈ [0, T ],

|ξ(t)| ≤ θ1 (|ξ(0)| + |m(0)|) e−δt + θ2|m(t)|. (3.20)

�

The proof is given in Section 3.3. For every time interval [0, T ] in which the closed-loop

solutions exist, Lemma 3.1 implies that

|c(ξ(t))| ≤ c̄|ξ(t)| ≤ c̄θ1(|ξ(0)| + |m(0)|)e−δt + c̄θ2|m(t)|. (3.21)

Thus, −κ g̃(X,x)y and −κ |m| g̃(X,x)y counteract c̄θ1(|ξ(0)|+|m(0)|)e−δt and c̄θ2|m(t)|,
respectively.

Our redesign guarantees boundedness of the states (X,x, ξ) and the signal m

for any κ > 0. Moreover, the states (X,x, ξ) converge to a compact set around the

origin, which can be made arbitrarily small by increasing κ.
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Theorem 3.1 Consider the system (3.1)-(3.4), and suppose Assumptions 3.2-3.5

hold. If α(X,x) is as in (3.8), then the control law (3.14)-(3.15) guarantees that the

closed-loop solutions (X(t), x(t), ξ(t),m(t)) are bounded for all t ≥ 0. Moreover, there

exists a class-KL function β(·, ·) with the property that, for any given ε > 0, we can

find κ? such that for all κ ≥ κ?,

|(X(t), x(t), ξ(t))| ≤ max {β(|(X(0), x(0), ξ(0),m(0))|, t) , ε} ∀t ≥ 0 . (3.22)

If, in addition, the Jacobian linearizations of F (X,µ(X)) in (3.5) and A0(z) in (3.12)

are asymptotically stable at zero, then the closed loop system (3.1)-(3.4),(3.14)-(3.15)

is globally asymptotically stable and locally exponentially stable for sufficiently large

κ.
�

The proof is given in Section 3.3. Inequality (3.22) indicates that the state variables of

the plant (3.1)-(3.4) converge to a ball of radius ε, where ε can be rendered arbitrarily

small by increasing κ. It is important to note that increasing κ does not cause peaking

in the transients because β(·, ·) is independent of κ.

Example 3.1 The redesign for the system

Ẋ = X3 + x

ẋ = x2 + (1 +X2)v (3.23)

ξ̇1 = −2ξ1 − ξ31 + ξ2

ξ̇2 = −2ξ2 + u

v = ξ1 +
−ξ2 + 10ξ3

2

1 + ξ2
2

+ u (3.24)

starts with the design of the nominal control law α(X,x). The X-subsystem satisfies

Assumption 3.1 with µ(X) = −X − X3, and Proposition 3.1 holds with β(X) = 1.

The y-subsystem is

ẏ = f̃(X,x) + g̃(X,x)v = x2 + (1 + 3X2)(X3 + x) + (1 +X2)v (3.25)

and, hence,

α(X,x) =
1

(1 +X2)

(

−x2 − (1 + 3X2)(X3 + x) − ky
)

, k > 0. (3.26)

The remaining task is to show that the unmodeled dynamics satisfy Assumptions

3.2-3.5. Assumptions 3.2 and 3.3 hold because, from (3.24),

d = 1 and c(ξ) = ξ1 +
−ξ2 + 10ξ3

2

1 + ξ2
2

, (3.27)
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and Assumption 3.4 is verified with V (ξ) = 1
2(ξ21 + ξ22) and δ = 1.5. To verify

Assumption 3.5 for the zero dynamics

A0(z) =

[

−2z1 − z3
1 + z2

−z1 − 2z2 +
z2−10z3

2

1+z2

2

]

, (3.28)

we use the ISS Lyapunov function V1 = 1
2z

T z and note from (3.13) that

V̇1 = zT [A0(z + d1) −A0(d1)] + zT [A0(d1) + d2], (3.29)

which, in view of

A0(z + d1) −A0(d1) =

∫ 1

0

[

∂A0

∂s

]

s=d1+λz

z dλ (3.30)

yields

V̇1 =
1

2

{

∫ 1

0
zT

(

[

∂A0

∂s

]

+

[

∂A0

∂s

]T
)

s=d1+λz

z dλ

}

+ zT [A0(d1) + d2]. (3.31)

It follows from (3.28) that

[

∂A0

∂z

]

+

[

∂A0

∂z

]T

≤ −2I ∀z ∈ IR2 (3.32)

and, hence,

V̇1 ≤ −zT z + zT [A0(d1) + d2] ≤ −V1 +
1

2
|[A0(d1) + d2]|2, (3.33)

which is an ISS property with input (d1, d2).

Having verified that Assumptions 3.2-3.5 hold, we substitute g̃(X,x) = 1 +X 2,

y = x+X +X3, sgn(d) = 1 and δ = 1.5 in (3.14)-(3.15), and obtain the control law

u = α(X,x) − κ (1 + |m| + |α(X,x)|) (1 +X2)(x+X +X3) , κ > 0 (3.34)

ṁ = −1.5m+ |u|, (3.35)

which completes the redesign of the nominal control law α(X,x) in (3.26). The closed-

loop system (3.23)-(3.24) is GAS and LES for sufficiently large κ, because the Jaco-

bian linearizations of A0(z) and F (X,µ(X)) = −X are asymptotically stable.
�
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3.3 Proofs

3.3.1 Proof of Lemma 3.1

Starting with V (ξ) as in Assumption 3.4, we use the Lyapunov function W (ξ) :=
√

V (ξ) which is not differentiable at the origin, but is locally Lipschitz because from

(3.9) and (3.11),
∣

∣

∣

∣

∂W

∂ξ

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
√
V

∂V

∂ξ

∣

∣

∣

∣

≤ v3
2
√
v1

∀ξ 6= 0. (3.36)

We need the following result of Teel and Praly [97], which makes use of the generalized

directional derivative of Clarke [11].

Proposition 3.2 Suppose W (ξ) is locally Lipschitz, f(ξ, u) and α̃(ξ, u) are continu-

ous, and

∂W

∂ξ
f(ξ, u) ≤ α̃(ξ, u) ∀u, ∀ξ /∈ Ω, (3.37)

where Ω is the set in which W is not differentiable. Let u(t) be a function defined on

[0, T ], and let ξ(t) be an absolutely continuous function satisfying ξ̇ = f(ξ(t), u(t)) on

[0, T ]. Then, for almost all t ∈ [0, T ],

Ẇ ≤ α̃(ξ(t), u(t)). (3.38)

�

To evaluate (3.37), we note from (3.10) and (3.36) that, for all ξ 6= 0,

∂W

∂ξ
(A(ξ) +Bu) =

1

2
√
V

∂V

∂ξ
(A(ξ) +Bu) ≤ −δW +

v3
2
√
v1

‖B‖ |u|. (3.39)

Denoting v4 := v3

2
√

v1
‖B‖, we conclude from Proposition 3.2 that, for almost all t ∈

[0, T ],

Ẇ ≤ −δW + v4|u| (3.40)

and, hence,

W (ξ(t)) ≤W (ξ(0))e−δt + v4

∫ t

0
e−δ(t−τ)|u(τ)|dτ ∀t ∈ [0, T ]. (3.41)

Substituting

∫ t

0
e−δ(t−τ)|u(τ)|dτ = m(t) −m(0)e−δt, (3.42)
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obtained from the solution of (3.15), we get

W (ξ) ≤ [W (ξ(0)) − v4m(0)]e−δt + v4m(t) ∀t ∈ [0, T ]. (3.43)

Using (3.9), we obtain

√
v1|ξ(t)| ≤ (

√
v2|ξ(0)| + v4|m(0)|)e−δt + v4|m(t)|, (3.44)

from which (3.20) follows with θ1 = 1√
v1

max{√v2, v4} and θ2 = v4√
v1

.
�

3.3.2 Proof of Theorem 3.1

We divide the proof into four parts. First, we prove that in (3.1)-(3.4) there

are no finite escape times, and that X(t) and x(t) are bounded. Next, we prove that

ξ(t) is also bounded, and derive (3.22). In the third part we prove the boundedness

of m(t). Finally, we prove GAS and LES under the additional assumption that the

Jacobian linearizations of A0(z) and F (X,µ(X)) are asymptotically stable.

Part 1: (X,x) ∈ L∞, (ξ,m) ∈ Le
∞

The closed-loop system is locally Lipschitz and, hence, solutions exist and are

unique. To prove the absence of finite escape times, we analyze the solutions on the

compact interval [0, T ] where T is in the maximal interval of existence, and show that

they are bounded by a continuous function of T on [0,∞). From (3.19),

d

dt

(

1

2
y2

)

≤ −ky2 + |g̃(X,x)y| |c(ξ)| + |g̃(X,x)y| |(|d| − 1)| |α(X,x)| (3.45)

−κ|d|(1 + |m| + |α(X,x)|) |g̃(X,x)y|2.

Substituting (3.21) and |g̃(X,x)y| ≥ g0|y|, and rearranging terms, we obtain

d

dt

(

1

2
y2

)

≤ −ky2 − κ|d| |m| |g̃(X,x)y|
(

g0|y| −
c̄θ2
κ|d|

)

(3.46)

−κ|d| |g̃(X,x)y|
(

g0|y| −
c̄θ1
κ|d| (|ξ(0)| + |m(0)|) e−δt

)

−κ|d| |α(X,x)| |g̃(X,x)y|
(

g0|y| −
|(|d| − 1)|
κ|d|

)

.

Defining

r :=
1

g0
max

{

c̄θ2
|d| ,

|(|d| − 1)|
|d|

}

, ζ(t) := max

{

c̄θ1
κ|d|g0

(|ξ(0)| + |m(0)|) e−δt,
r

κ

}

,

(3.47)
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we note from (3.46) that

|y| ≥ |ζ(t)| ⇒ d

dt

(

1

2
y2

)

≤ −ky2. (3.48)

This means that

|y(t)| ≤ max

{

|y(0)|e−kt, sup
0≤τ≤t

|ζ(τ)|
}

∀t ∈ [0, T ], (3.49)

which is an ISS property with input ζ(t). It follows from (3.47) that

|ζ(t)| ≤ max
{

|ζ(0)|e−δt,
r

κ

}

, (3.50)

that is ζ(t) is ISS with input r
κ
. Moreover, the X-subsystem (3.6) is ISS with input

y. Recalling that the cascade interconnection of ISS systems is ISS (see Sontag [86]),

we conclude that there exists a class-K function γ0(·) and a class-KL function β0(·, ·)
such that

|(X(t), x(t))| ≤ max

{

β0(|(X(0), x(0), ζ(0))|, t), γ0

(

1

κ

)}

∀t ∈ [0, T ]. (3.51)

This gives an upper bound on (X(t), x(t)) which is independent of T . Using this upper

bound in (3.14)-(3.15), we can find a constant N such that for almost all t ∈ [0, T ],

d

dt
|m| ≤ N |m| +N, (3.52)

which implies that |m(t)| is bounded by a continuous function of T on [0,∞). Like-

wise, a continuous bound can be derived for |ξ(t)| using (3.21). Since the closed-loop

signals (X,x, ξ,m) are bounded by a continuous function of T on [0,∞), the maximal

interval of existence is infinite, that is (X,x, ξ,m) ∈ Le
∞. Moreover (3.51) holds for

all t ≥ 0, which proves that (X,x) ∈ L∞.

Part 2: ξ ∈ L∞

Our derivations so far have not relied on Assumption 3.5. We now employ

Assumption 3.5 to prove that ξ ∈ L∞. To eliminate u from (3.3), we use (3.4) and

obtain

ξ̇ = A0(ξ) +B0v, (3.53)

where A0(ξ) := A(ξ) − 1
d
Bc(ξ) and B0 := 1

d
B. Then, it follows from (3.2) and (3.53)

that the variable

z := ξ −B0

∫ x

0

dσ

g(X,σ)
(3.54)
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is governed by

ż = A0

(

z +B0

∫ x

0

dσ

g(X,σ)

)

−B0 f(X,x)

g(X,x)
, (3.55)

which is (3.13) with d1 = B0
∫ x

0
dσ

g(X,σ) , and d2 = −B0 f(X,x)
g(X,x) . Since d1 and d2 are

continuous functions of (X,x), and vanish at zero, it follows from Assumption 3.5 and

the ISS property of the cascade of ISS systems that there exist a class-KL function

β1(·, ·) and a class-K function γ1(·) such that, for all t ≥ 0,

|(X(t), x(t), ξ(t))| ≤ max

{

β1(|(X(0), x(0), ξ(0), ζ(0))|, t), γ1

(

1

κ

)}

. (3.56)

This proves that ξ ∈ L∞. To prove that (3.22) holds, we need to eliminate ζ(0) from

(3.56). To this end, we let κ̄ > 0 and observe from (3.47) that for all κ ≥ κ̄,

|ζ(0)| ≤ max

{

c̄θ1
κ̄|d|g0

(|ξ(0)| + |m(0)|), r
κ

}

. (3.57)

Using this inequality in (3.56), we can find a class-KL function βκ̄(·, ·) and a class-K
function γ(·) such that for all κ ≥ κ̄,

|(X(t), x(t), ξ(t))| ≤ max

{

βκ̄(|(X(0), x(0), ξ(0),m(0))|, t), γ
(

1

κ

)}

∀t ≥ 0.

(3.58)

Then, (3.22) follows by setting β(·, ·) = βκ̄(·, ·) and κ? = max{ 1
γ−1(ε)

, κ̄}.

Part 3: m ∈ L∞

To prove boundedness of m(t), we consider the differential equations (3.15) and

(3.19), and analyze their solutions in the half-plane H+ := {(y,m)|m ≥ 0} which

is forward invariant from (3.15). It is sufficient to analyze solutions in H+ because

(3.15) implies that solutions satisfy |m(t)| ≤ |m(0)|e−δt as long as they remain outside

H+. We use the function

U(y,m) =
1

2
y2 + θm, (3.59)

where the positive constant θ is to be determined. We first note that there exist

class-K∞ functions u1(·) and u2(·) such that, ∀ (y,m) ∈ H+,

u1(|(y,m)|) ≤ U(y,m) ≤ u2(|(y,m)|). (3.60)
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Next, from (3.15) and (3.19), U̇(y,m) in H+ satisfies

U̇ ≤ −ky2 − κ|d| |g̃(X,x)y|2m+ θ(−δm+ |u|) + |g̃(X,x)y|(|c(ξ)| + |(|d| − 1)| |α(X,x)|).
(3.61)

Substituting

|u| ≤ |α(X,x)| + κ(1 + |α(X,x)|)|g̃(X,x)y| + κ|g̃(X,x)y|m (3.62)

in (3.61), and defining

R := |g̃(X,x)y|(|c(ξ)| + |(|d| − 1)| |α(X,x)|) + θ(|α(X,x)| + κ(1 + |α(X,x)|)|g̃(X,x)y|),
(3.63)

we obtain

U̇ ≤ −ky2 − κ|d|
(

|g̃(X,x)y|2 − θ
1

|d| |g̃(X,x)y| + θ
δ

κ|d|

)

m+R. (3.64)

We pick θ > 0 small enough to guarantee p2 − θ 1
|d|p+ θ δ

κ|d| > 0, ∀p ∈ IR, so that we

can find q1 > 0 such that
(

|g̃(X,x)y|2 − θ
1

|d| |g̃(X,x)y| + θ
δ

κ|d|

)

≥ q1. (3.65)

Substituting in (3.64), we get

U̇ ≤ −q2U +R, (3.66)

where q2 = min{2k, κ|d|q1

θ
}. Since R(t) is bounded, (3.66) implies that U(t) is

bounded. Then, m ∈ L∞ follows from (3.60).

Part 4: GAS and LES

Defining A0
L = ∂A0(z)

∂z
|z=0 and FL = ∂F (X,µ(X))

∂X
|X=0, the Jacobian linearization

of the (X, y, z)-subsystem (3.16), (3.17) and (3.55) is

ż = A0
Lz +B1X + b2y

Ẋ = FLX + b3y (3.67)

ẏ = −κ c1(1 + |m|)y + c2y + b4z + b5X.

Since A0
L and FL are Hurwitz, we let P1 = P T

1 > 0, P2 = P T
2 > 0 satisfy A0

L
T
P1 +

P1A
0
L = −I, F T

L P2 + P2FL = −I, and use

S = zTP1z + γXTP2X + y2, γ > 0, (3.68)
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as a Lyapunov function for the nonlinear (X, y, z)-subsystem (3.16),(3.17),(3.55). The

expression for Ṡ shows that by selecting κ and γ sufficiently large, we can find con-

stants % > 0 and ϑ > 0 such that Ṡ ≤ −%S is satisfied for all (X, y, z) in the set

Ωϑ := {(X, y, z) : S ≤ ϑ}. Thus, if a trajectory (X(t), y(t), z(t),m(t)) enters Ωϑ × IR,

then (X(t), y(t), z(t)) → 0 exponentially as t → ∞. This also ensures m(t) → 0 be-

cause of (3.66), where R defined by (3.63) as a function of (X, y, z) vanishes at zero.

Choosing ε > 0 sufficiently small in (3.22), we guarantee that the solutions (X, y, z,m)

enter Ωϑ × IR in finite time and, hence, (X(t), y(t), z(t),m(t)) → 0. Finally, LES is

proved with the help of the Lyapunov function γ̄S+U , in which U is as in (3.66) and

the constant γ̄ > 0 is sufficiently large.
�

3.4 Summary

The redesign in this chapter renders a class of nonlinear control laws robust

against input unmodeled dynamics which are relative degree zero, globally exponen-

tially stable, and have ISS zero dynamics. For linear unmodeled dynamics, the latter

two conditions are equivalent to stability and minimum phase properties, which are

less restrictive than the conditions required by previous redesigns. Nonlinear unmod-

eled dynamics considered here also differ from those in other redesigns.
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Chapter 4

Nested Saturation Redesign

The redesigns discussed so far require that the unmodeled dynamics be relative-

degree zero and minimum-phase. This restricts the applicability of these redesigns

because most physical examples of unmodeled dynamics, like actuator models, have

a higher relative degree.

For systems in feedforward form, the nested saturation design of Teel [92, 93]

employs saturation elements to guarantee a small-gain property. In the absence of

unmodeled dynamics, Teel’s design achieves GAS and LES.

In this chapter we redesign nested saturation control laws to guarantee GAS

and LES in the presence of input unmodeled dynamics. The redesign is applicable

to a large class of unmodeled dynamics, not restricted to be relative degree zero or

minimum phase. Using the asymptotic small-gain theorem of Teel [93], we prove not

only GAS, but also an asymptotic gain property from small disturbances to the states.

4.1 Problem Statement

We consider the locally Lipschitz system

ẋn = xn−1 + gn(x1, x2, · · · , xn−1, v, d)

... =
... (4.1)

ẋ2 = x1 + g2(x1, v, d)

ẋ1 = v + g1(v, d)

ξ̇ = q(ξ, u, d) (4.2)

v = p(ξ, u, d),
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where d ∈ IRm represents disturbances, ξ ∈ IRp, u, v ∈ IR, the functions q(ξ, u, d) and

p(ξ, u, d) vanish at zero, and gi’s satisfy

g1(v, 0) = o(v)

gi(x1, · · · , xi−1, v, 0) = o(x1, · · · , xi−1, v), i = 2, · · · , n, (4.3)

where the notation g(v) = o(v) means that

lim
|v|→0

|g(v)|
|v| = 0 . (4.4)

For the nominal system, that is (4.1) with v = u and d ≡ 0, the nested saturation

design guarantees GAS and LES. However, the following example illustrates the loss

of stability due to unmodeled dynamics:

Example 4.1 For the system

ẋ2 = x1 + g2(x1, v)

ẋ1 = v + g1(v), (4.5)

the nested saturation control law is

v = u = −φ1(y1 + φ2(y2)), (4.6)

where y1 = x1, y2 = x1 + x2, and φi(·)’s are saturation functions with saturation

levels selected according to Teel [92].

In the presence of the input unmodeled dynamics

v(s) =
−s+ 1

s2 + s+ 1
u(s), (4.7)

the resulting closed-loop system is unstable as verified from the Jacobian linearization.
�

In this example instability is established from the linearization, therefore it can-

not be prevented by adjusting the saturation levels. To guarantee robustness against

unmodeled dynamics, we introduce the controller gains k1, · · · , kn in the redesigned

control law

u = −φ1(k1x1 + φ2(k2x2 + · · · + φn(knxn) · · · )), (4.8)

where φi(·)’s are saturation functions as defined in (1.56). We provide a procedure

for selection of the gains ki and the saturation levels λi to ensure robustness.
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For unmodeled dynamics satisfying Properties 4.1 and 4.2 below, our redesign

achieves an asymptotic gain from the disturbance d to the state (x, ξ) when

‖d‖a := lim sup
t→∞

|d(t)|

is sufficiently small. In particular, if ‖d‖a = 0, then x(t) and ξ(t) converge to the

origin. For d(t) ≡ 0, the origin (x, ξ) = (0, 0) is GAS and LES.

Property 4.1 The vector field q(ξ, u, 0) and the output function p(ξ, u, 0) are differ-

entiable at the origin and the Jacobian linearization

A :=

[

∂q(ξ, u, 0)

∂ξ

]

(0,0)

B :=

[

∂q(ξ, u, 0)

∂u

]

(0,0)

(4.9)

C :=

[

∂p(ξ, u, 0)

∂ξ

]

(0,0)

D :=

[

∂p(ξ, u, 0)

∂u

]

(0,0)

is such that

1. The system matrix A is Hurwitz,

2. The dc gain δ = D − CA−1B > 0 is positive.

Property 4.2 For ξ̇ = q(ξ, u, d), there exist constants cu, cd,∆d ≥ 0, ∆u > 0 such

that, if u(t), d(t) are locally bounded, ‖u‖a ≤ ∆u, ‖d‖a ≤ ∆d, then, for each initial

condition ξ(0), the solution ξ(t) exists for all t ≥ 0, and

‖ξ‖a ≤ max{cu‖u‖a, cd‖d‖a}. (4.10)

Inequality (4.10) expresses an asymptotic gain from the input (u, d) to the state ξ.

If the ξ-subsystem has a linear input-to-state stability gain as in Sontag [86], then

Property 4.2 is satisfied with ∆u = ∆d = ∞.

4.2 Nested Saturation Redesign

Substituting v = p(ξ, u, d) and using (4.9), we rewrite the system (4.1),(4.2) as

ẋn = xn−1 +Gn(x1, x2, · · · , xn−1, ξ, u, d)

... =
...

ẋ2 = x1 +G2(x1, ξ, u, d) (4.11)

ẋ1 = Cξ +Du+G1(ξ, u, d)

ξ̇ = q(ξ, u, d),
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where G1(ξ, u, d) := p(ξ, u, d) − Cξ −Du+ g1(p(ξ, u, d), d) and, for i = 2, · · · , n,

Gi(x1, · · · , xi−1, ξ, u, d) := gi(x1, · · · , xi−1, p(ξ, u, d), d). (4.12)

Because of (4.3), Gi’s satisfy

G1(ξ, u, 0) = o(ξ, u)

Gi(x1, · · · , xi−1, ξ, u, 0) = o(x1, · · · , xi−1, ξ, u), i = 2, · · · , n. (4.13)

The saturation levels λi > 0 and the gains ki > 0 in (4.8) are designed recur-

sively: In the first step we set

u = −φ1(k1x1 − u1), (4.14)

where u1 is to be designed in the next step. Selecting λ1 > 0 and k1 > 0 according

to Lemma 4.1 below, we guarantee that the composite system

ξ̇1 :=

[

ẋ1

ξ̇

]

= q1(ξ1, u1, d) :=

[

Cξ +Du+G1(ξ, u, d)

q(ξ, u, d)

]∣

∣

∣

∣

∣

u=−φ1(k1x1−u1)

v1 := x1 = [ 1 0 · · · 0 ]ξ1 =: C1ξ1

(4.15)

with input (u1, d) and output v1 possesses the same properties as the unmodeled

dynamics subsystem, that is, Property 4.2 is satisfied with q, ξ, u replaced by q1, ξ1, u1,

and Property 4.1 is satisfied with the Jacobian linearization A1, B1 of the vector field

q1(ξ1, u1, 0), D1 = 0 and C1 as in (4.15).

In the second step we treat the ξ1 = [x1, ξ
T ]T subsystem of (4.11) with input

(u1, d) and output v1 = C1ξ1 as the “virtual” unmodeled dynamics subsystem for the

(x2, · · · , xn) subsystem and rewrite (4.11) as

ẋn = xn−1 +Gn,2(x2, · · · , xn−1, ξ1, u1, d)

... =
...

ẋ2 = C1ξ1 +G2,2(ξ1, u1, d) (4.16)

ξ̇1 = q1(ξ1, u1, d),

where, for j = 2, · · · , n, the function Gj,2 is obtained by substituting (4.14) in Gj .

We note that

G2,2(ξ1, u1, 0) = o(ξ1, u1)

Gj,2(x2, · · · , xj−1, ξ1, u1, 0) = o(x2, · · · , xj−1, ξ1, u1), j = 3, · · · , n, (4.17)
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and proceed to design

u1 = −φ2(k2x2 − u2) (4.18)

such that the composite system

ξ̇2 :=

[

ẋ2

ξ̇1

]

= q2(ξ2, u2, d) :=

[

C1ξ1 +G2,2(ξ1, u1, d)

q1(ξ1, u1, d)

]∣

∣

∣

∣

∣

u1=−φ2(k2x2−u2)

v2 := x2 = [ 1 0 0 · · · 0 ]ξ2 =: C2ξ2

(4.19)

with input (u2, d) and output v2 satisfies Properties 1 and 2.

This recursive design relies on the assumption that at the ith step λi and ki

can be selected such that the ξi-subsystem with input (ui, d) and output vi satisfies

Properties 1 and 2. We now prove that this is guaranteed by selecting both λi > 0

and ki > 0 sufficiently small.

Lemma 4.1 Consider the system (4.11) and let ξi be defined by ξ0 := ξ, ξi :=

[xi, ξ
T
i−1]

T , i = 1, · · · , n. Let the control u be constructed recursively by

ui−1 = −φi(kixi − ui), i = 1, · · · , n, (4.20)

where φi(·) is a saturation function with saturation level λi, u0 = u and un := 0.

Let q0 := q, G1,1 := G1, C0 := C, D0 := D, and Ci := [ 1 01×(p+i−1) ], Di := 0,

i = 1, · · · , n, and write the ξi-subsystem of (4.11) as

ẋi = vi−1 +Gi,i(ξi−1, ui−1, d)

ξ̇i−1 = qi−1(ξi−1, ui−1, d), (4.21)

where Gi,i(ξi−1, ui−1, 0) = o(ξi−1, ui−1).

If the ξi−1-subsystem with input (ui−1, d) and output

vi−1 = Ci−1ξi−1 +Di−1ui−1 (4.22)

possesses Properties 1 and 2, then there exist λ?
i > 0 and k?

i > 0 such that, with

λi ∈ (0, λ?
i ] and ki ∈ (0, k?

i ] in (4.20), the ξi-subsystem

ξ̇i :=

[

ẋi

ξ̇i−1

]

= qi(ξi, ui, d)

:=

[

Ci−1ξi−1 +Di−1ui−1 +Gi,i(ξi−1, ui−1, d)

qi−1(ξi−1, ui−1, d)

]∣

∣

∣

∣

∣

ui−1=−φi(kixi−ui)

(4.23)
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with input (ui, d) and output

vi := xi = Ciξi +Diui (4.24)

satisfies Properties 1 and 2.
�

The proof is given in Section 4.3. Our control law is constructed by recursively

applying Lemma 4.1 for i = 1, · · · , n to select λi and ki. At the nth step, the

saturation level λn and the gain kn in

un−1 := −φn(knxn) (4.25)

guarantee that the closed-loop system

ξ̇n :=

[

ẋn

ξ̇n−1

]

= qn(ξn, d) :=

[

xn−1 +Gn,n(ξn−1, un−1, d)

qn−1(ξn−1, un−1, d)

]∣

∣

∣

∣

∣

un−1=−φn(knxn)

(4.26)

possesses Properties 1 and 2, which yield the following result:

Theorem 4.1 Consider the system (4.1) with the unmodeled dynamics (4.2) satisfy-

ing Properties 1 and 2. If the control law (4.8) is constructed by recursively applying

Lemma 4.1 for i = 1, · · · , n, then there exist ∆ ≥ 0 and c ≥ 0 such that,

1. If d(t) is locally bounded and ‖d‖a ≤ ∆, then (x(t), ξ(t)) exist for all t ≥ 0

and

‖(x, ξ)‖a ≤ c‖d‖a. (4.27)

2. If d(t) ≡ 0, then the origin is globally asymptotically stable and locally expo-

nentially stable.

Proof: Inequality (4.27) follows directly from Property 4.2. If ‖d‖a = 0, then (4.27)

guarantees global attractivity of the origin (x, ξ) = (0, 0). If, in addition, d(t) ≡ 0, we

have LES because the Jacobian linearization An of qn(ξn, 0) is Hurwitz by Property

4.1. Since the resulting closed-loop system is time-invariant, global attractivity and

LES together imply GAS.
�

It is important to note that this redesign does not require detailed knowledge of

the unmodeled dynamics (4.2). Indeed, from the proof of Lemma 4.1, the selection

of λi and ki is based on upper bounds on δ = D − CA−1B, |CA−1|, cu and ∆u in

Properties 1 and 2, and, on functions that form upper bounds on |p(ξ, u, 0)|, |q̃(ξ, u, 0)|

50





4.3 Proof of Lemma 4.1

We give the proof for i = 1, that is, we show that if λ1 > 0 and k1 > 0 in (4.14)

are selected sufficiently small, then the ξ1-subsystem (4.15) with input u1 and output

v1 satisfies Properties 1 and 2.

We prove Property 4.2 by using the asymptotic small-gain theorem of Teel [93].

To put the system (4.15) in a form suitable for the small-gain formulation we write

q(ξ, u, d) = Aξ +Bu+ q̃(ξ, u, d), (4.29)

where q̃(ξ, u, 0) = o(ξ, u). From (4.15) and (4.29), the variable

z := x1 − CA−1ξ (4.30)

is governed by

ż = (D − CA−1B)u+G(ξ, u, d), (4.31)

where G(ξ, u, d) := G1(ξ, u, d) − CA−1q̃(ξ, u, d), thus G(ξ, u, 0) = o(ξ, u). We substi-

tute δ = D − CA−1B > 0 in (4.31), and write (4.15) as

ż = δu+G(ξ, u, d) (4.32)

ξ̇ = q(ξ, u, d).

From (4.14), we have

δu = −δφ1

(

k1(x1 −
u1

k1
)

)

. (4.33)

It follows from the definition of saturation functions (1.56) that φ̃(s) := δφ1(s/δ) is

also a saturation function with level λ̃ := δλ1. Defining k̃ := δk1, we write (4.33) as

δu = −φ̃
(

k̃(x1 −
u1

k1
)

)

. (4.34)

Substituting (4.34) in (4.32), and using (4.30), we obtain

ż = −φ̃
(

k̃(z + CA−1ξ − u1

k1
)

)

+G(ξ, u, d) (4.35)

ξ̇ = q(ξ, u, d).

Defining

y
(2)
1 := CA−1ξ, y

(2)
2 :=

G(ξ, u, d)

k̃
,
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and there exist constants ∆ν , c4, c5 ≥ 0 such that, if ‖ν(2)‖a ≤ ∆ν, then

‖y(2)
1 ‖a ≤ max{γ1(‖y(1)‖a), c4 ‖ν(2)‖a} (4.41)

‖y(2)
2 ‖a ≤ max{γ2(‖y(1)‖a), c5 ‖ν(2)‖a}, (4.42)

A4. For all s 6= 0,

c1 γ1(s) < s, c2 γ2(s) < s. (4.43)

Then, there exist constants cν,1, cν,2,∆ν,2 ≥ 0, ∆ν,1 > 0 such that (4.38) holds for

‖ν(1)‖a ≤ ∆ν,1 and ‖ν(2)‖a ≤ ∆ν,2.
�

We now prove that if λ1 and k1 are sufficiently small, then the conditions A1

through A4 of Proposition 4.1 are satisfied for Σ(1) and Σ(2) defined in (4.36) and

(4.37).

Uniqueness of solutions follows from the Lipschitz continuity of the right hand

sides of (4.36) and (4.37). The absence of finite escape times can be argued from the

boundedness of u, as in Teel [93, Lemma 3.5].

To prove A2, we introduce the Lyapunov function V (z) = z2 for (4.36), and

note that |y(2)
2 | < λ̃/2k̃ and |z| > |y(2)

1 + ν(1)| + |y(2)
2 | together imply V̇ < 0. Thus, if

‖y(2)
2 ‖a < λ̃/2k̃ = λ1/2k1, then

‖z‖a ≤ ‖y(2)
1 + ν(1)‖a + ‖y(2)

2 ‖a. (4.44)

It follows from (4.44) and y(1) := z + y
(2)
1 + ν(1) that if ‖y(2)

2 ‖a < λ1/2k1, then

‖y(1)‖a ≤ 2‖y(2)
1 ‖a + ‖y(2)

2 ‖a + 2‖ν(1)‖a ≤ max{6‖y(2)
1 ‖a, 6‖y(2)

2 ‖a, 6‖ν(1)‖a}. (4.45)

We conclude from (4.45) that A2 holds with c1 = c2 = c3 = 6 and ∆y < λ1/2k1, say,

∆y =
λ1

3k1
. (4.46)

To prove A3, we recall from Property 4.2 that, if ‖u‖a ≤ ∆u, that is, λ1 ≤ ∆u

and, if ‖ν(2)‖a ≤ ∆d, then

‖ξ‖a ≤ max{cu ‖u‖a , cd ‖ν(2)‖a}. (4.47)

From (1.56), we have |u| = |φ1(k1y
(1))| ≤ min{k1|y(1)|, λ1}. Substituting in (4.47),

y
(2)
1 := CA−1ξ satisfies (4.41) with

γ1(s) = |CA−1| cu min{k1s, λ1}, c4 = |CA−1|cd, ∆ν ≤ ∆d. (4.48)
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It follows from (4.48) that γ1(∞) = |CA−1| cuλ1 <∞ and, for all s ≥ 0,

γ1(s) ≤ k1cu|CA−1|s. (4.49)

To show that (4.42) holds for y
(2)
2 := G(ξ,u,d)

δk1
, we use Lipschitz continuity of G(ξ, u, d)

and note that, if ξ, u, d belong to a compact set, then ∃L ≥ 0 such that

|G(ξ, u, d)| ≤ |G(ξ, u, 0)| + L |d|. (4.50)

By selecting ∆ν to be finite, we restrict ‖d‖a ≤ ∆ν to a compact interval. ‖u‖a and

‖ξ‖a also belong to a compact set because |u| ≤ λ1. Then, from G(ξ, u, 0) = o(ξ, u),

and the gain property (4.10), there exists L0 ≥ 0 and a nondecreasing, continuous

function γ0(s) = o(s) such that

‖G(ξ, u, d)‖a ≤ max{γ0(‖u‖a), L0 ‖d‖a}, (4.51)

thus (4.42) is satisfied with

γ2(s) =
1

k1δ
γ0(min{k1s, λ1}) , c5 =

L0

k1δ
. (4.52)

It is clear that γ2(∞) < ∞ as in (4.40). Comparing γ2(∞) = 1
k1δ
γ0(λ1) to ∆y in

(4.46), and recalling γ0(s) = o(s), we conclude that γ2(∞) ≤ ∆y is satisfied if λ1 is

selected sufficiently small. From (4.52), a linear bound on γ2(s) is

γ2(s) ≤ κs, (4.53)

where κ := sup
s∈[0,

λ1

k1
]

γ2(s)
s

= sup
s∈[0,

λ1

k1
]

γ0(k1s)
δ k1s

. Defining s̃ := k1s, we get

κ = sup
s̃∈[0,λ1]

γ0(s̃)

δ s̃
, (4.54)

which is independent of k1. Moreover, since γ0(s̃) = o(s̃), κ can be rendered arbitrarily

small by making λ1 sufficiently small.

We prove A4 using the upper bounds on γ1(s) and γ2(s) given in (4.49) and

(4.53), respectively. From (4.49), the first inequality in (4.43) is guaranteed by select-

ing k1 such that

c1k1cu|CA−1| < 1 . (4.55)

From (4.53), the second inequality in (4.43) is guaranteed by selecting λ1 and, hence,

κ sufficiently small.
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To show that Property 4.1 holds for (4.15), we note that the Jacobian lineariza-

tion of q1(ξ1, u1, 0) is

A1 =

[

−k1D C

−k1B A

]

, B1 =

[

D

B

]

. (4.56)

Using C1 = [ 1 01×p ], D1 = 0, and

A−1
1 =

[

− 1
k1

1
k1
CA−1

−A−1B A−1 +A−1BCA−1

]

, (4.57)

we obtain

δ1 = D1 − C1A
−1
1 B1 =

1

k1
(D − CA−1B) > 0 . (4.58)

With k1 selected to satisfy the small-gain condition (4.55), A1 is also guaranteed

to be Hurwitz. This follows because the small gain analysis for (4.35) also holds with

G ≡ 0, u1 ≡ 0, d ≡ 0, and with q(ξ, u) := q(ξ, u, 0) replaced by its linearization

Aξ +Bu,

ż = −k̃(z + CA−1ξ) (4.59)

ξ̇ = Aξ +Bu, u = −k1(z + CA−1ξ),

which is ξ̇1 = A1ξ1 expressed in the (z, ξ) coordinates. In Lemma 4.2 below, we show

that the linearization

ξ̇ = Aξ +Bu, (4.60)

has the same asymptotic input-to-state gain as the nonlinear system ξ̇ = q(ξ, u).

Then, since the small-gain condition (4.55) holds, the asymptotic small-gain theorem

guarantees attractivity of the origin for ξ̇1 = A1ξ1, which is equivalent to Hurwitz

stability of A1.
�

Lemma 4.2 Let ξ̇ = q(ξ, u) be such that its Jacobian linearization (4.60) is Hurwitz,

and for each locally bounded u satisfying ‖u‖a ≤ ∆u, ∆u > 0, and for each initial

condition ξ(0), the solution ξ(t) exists for all t ≥ 0 and satisfies

‖ξ‖a ≤ cu‖u‖a. (4.61)

Then, for each locally bounded u, the solutions of (4.60) also satisfy (4.61).
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Proof: Suppose, on the contrary, there exists a locally bounded u? such that the

solution ξL of the linearization (4.60) satisfies

‖ξL‖a = c‖u?‖a, c > cu. (4.62)

Since (4.60) is a linear system, multiplying u? by a constant does not change (4.62),

thus we can set ‖u?‖a = ε ≤ ∆u. We rewrite ξ̇ = q(ξ, u) as

ξ̇ = Aξ +Bu+ q̃(ξ, u), (4.63)

where q̃(ξ, u) = o(ξ, u), and note that its solution with u = u? can be expresses as

ξ(t) = ξL(t) + ξq̃(t), where ξq̃ is due to q̃(ξ, u?), and,

‖ξ‖a ≥ |c‖u?‖a − ‖ξq̃‖a| =

∣

∣

∣

∣

c− ‖ξq̃‖a

ε

∣

∣

∣

∣

‖u?‖a . (4.64)

Because of (4.61), ‖q̃(ξ, u?)‖a = o(ε), and, hence, ‖ξq̃‖a = o(ε). Thus, for sufficiently

small ε, |c− ‖ξq̃‖a

ε
| > cu, which contradicts (4.61).

�

4.4 Summary

We have presented a redesign of nested saturation control laws that makes them

robust against input unmodeled dynamics, without any restrictions on their zero

dynamics or relative degree. The achieved robustness property is due to the low-gain

design, which is sufficient for stabilization of systems in feedforward form. Without

the feedforward structure, global stabilization may not be possible in the presence of

unmodeled dynamics, because low-gain designs may not be applicable.
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Part II

Output-Feedback Designs
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Chapter 5

A New Nonlinear Observer

The control designs we have presented in Part I assume that the full state of the

plant is measured. We now remove this assumption and consider the problem where

only a part of the state is available for measurement. In the rest of the dissertation

we introduce new tools for nonlinear observer and observer-based control designs, and

use them to design robust output-feedback control laws for systems with unmodeled

dynamics.

In this chapter we introduce a new global observer design. The class of systems

for which our observer is applicable are characterized by two restrictions which allow

the observer error system to satisfy the multivariable circle criterion. First, a linear

matrix inequality (LMI) is to be feasible, which implies a positive real property for

the linear part of the observer error system. The second restriction is that the non-

linearities be nondecreasing functions of linear combinations of unmeasured states.

This restriction ensures that the vector time-varying nonlinearity in the observer er-

ror system satisfies the sector condition of the circle criterion. The observer design in

Section 5.1 is accompanied by its reduced-order variant in Section 5.2.

The proposed observer design is constructive in the sense that the issues of exis-

tence and the evaluation of observer matrices satisfying the circle criterion are resolved

by efficient LMI computations. A further advantage of our design is its robustness

against inexact modeling of nonlinearities. This robustness property is analyzed in

Section 5.3, and bounds are given within which the observer error gradually increases

with an increase in the modeling error.

61



5.1 The New Observer Design

We now present the observer design for the control system

ẋ = Ax+Gγ(Hx) + %(y, u) (5.1)

y = Cx ,

where x ∈ IRn is the state, y ∈ IRp is the measured output, u ∈ IRm is the control

input, the pair (A,C) is detectable, and, γ(·) and %(·, ·) are locally Lipschitz. The

state-dependent nonlinearity γ(Hx) is an r-dimensional vector where each entry is a

function of a linear combination of the states

γi = γi(

n
∑

j=1

Hijxj), i = 1, · · · , r . (5.2)

The main restriction is that each γi(·) is nondecreasing, that is, for all a, b ∈ IR, it

satisfies

(a− b)[γi(a) − γi(b)] ≥ 0 . (5.3)

If γi(·) is continuously differentiable, then (5.3) means that dγi(v)/dv ∈ [0,∞) for

all v ∈ IR. If, instead, γi(·) satisfies dγi(v)/dv ∈ [gi,∞) with gi 6= 0, we can still

represent the system as in (5.1)-(5.3) by defining a new function γ̃i(v) := γi(v) − giv

which satisfies dγ̃i(v)/dv ∈ [0,∞), and absorbing giv in the linear part of the system.

The observer for system (5.1)-(5.3) is

˙̂x = Ax̂+ L(Cx̂− y) +Gγ(Hx̂+K(Cx̂− y)) + %(y, u) , (5.4)

and the design task is to determine the observer matrices K ∈ IRr×p and L ∈ IRn×p.

Note that the nonlinear injection γ(Hx̂ +K(Cx̂− y)) is analogous to w3 in the van

der Pol example in Section 1.2.4. The same observer design can be applied to the

system (5.1) when the nonlinearity γ(Hx) also depends on y and u. In this case we

require that the nondecreasing property (5.3) hold for each y ∈ IRp and u ∈ IRm.

For the observer equation to be defined, the uniqueness of the solutions x(t) of

(5.1) is guaranteed by restricting the control law u = α(y, x̂, t) to be locally Lipschitz

in (y, x̂), uniformly in t. As will be further clarified in Chapter 7, u = α(y, x̂, t) is

also assumed to ensure that x(t) does not escape to infinity in finite time, that is

x(t) ∈ Le
∞.

From (5.1) and (5.4), the dynamics of the observer error e = x− x̂ are governed

by

ė = (A+ LC)e+G [γ(v) − γ(w)] , (5.5)
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where

v := Hx and w := Hx̂+K(Cx̂− y) . (5.6)

We begin the observer design by representing the observer error system (5.5) as the

feedback interconnection of a linear system and a multivariable sector nonlinearity.

To this end, we introduce a new variable

z := v − w = (H +KC)e , (5.7)

and view γ(v) − γ(w) as a function of t and z

ϕ(t, z) := γ(v) − γ(w) , (5.8)

where the time dependence of ϕ(t, z) is due to v(t) = Hx(t). Substituting (5.8), we

rewrite the observer error system (5.5) as

ė = (A+ LC)e+Gϕ(t, z) (5.9)

z = (H +KC)e ,

and note from (5.3) that each component of ϕ(t, z) satisfies

ziϕi(t, zi) ≥ 0 , ∀zi ∈ IR . (5.10)

Thanks to this sector property, we can employ the multivariable circle criterion and

derive a condition that guarantees the exponential convergence of the observer error

e(t) to zero.

Theorem 5.1 Consider the plant (5.1), observer (5.4), and suppose x(t) exists for

all t ≥ 0. If there exists a matrix P = P T > 0, a constant ν > 0, and a diagonal

matrix Λ > 0 such that
[

(A+ LC)TP + P (A+ LC) + νI PG+ (H +KC)TΛ

GTP + Λ(H +KC) 0

]

≤ 0, (5.11)

then the observer error e(t) satisfies for all t ≥ 0

|e(t)| ≤ κ|e(0)| exp(−βt) , (5.12)

where κ =
√

λmax(P )
λmin(P ) , β = ν

2λmax(P ) .
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Proof: From (5.9), the time derivative of V (e) = eTPe is

V̇ = eT [(A+ LC)TP + P (A+ LC)]e+ 2eTPGϕ(t, z) , (5.13)

and, in view of (5.11),

V̇ ≤ −ν|e|2 − 2eT (H +KC)T Λϕ(t, z) . (5.14)

Substituting (H +KC)e = z, we rewrite (5.14) as

V̇ = −ν|e|2 − 2

r
∑

i=1

λiziϕi(t, zi) , (5.15)

where λi > 0, i = 1, · · · , r, are the entries of the diagonal matrix Λ. Then, the sector

property (5.10) yields

V̇ ≤ −ν|e|2 , (5.16)

from which (5.12) follows.
�

With Theorem 5.1, the observer design for system (5.1) is reduced to the problem

of finding observer matrices K and L such that (5.11) is satisfied with some P = P T >

0, Λ > 0, and ν > 0. The existence of such K and L depends on A, C, G and H, and

cannot be ascertained a priori. However, (5.11) is a LMI in P , PL, Λ, ΛK and ν.

Therefore, we can use the efficient numerical tools available for LMI’s to determine

whether the problem is feasible and, if so, to compute K and L.

We have gained additional design freedom in the LMI (5.11) by introducing

Λ = diag(λ1, · · · , λr) as a parameter instead of Λ = I. Due to the special struc-

ture of ϕ(t, z), in which every individual entry ϕi(t, zi) satisfies the sector condition

ziϕi(t, zi) ≥ 0, the sum
∑r

i=1 λiziϕi(t, zi) = ϕ(t, z)T Λz is nonnegative for any choice

of λi > 0, i = 1, · · · , r. This means that the framed block in the feedback loop

in Figure 5.1 below is a multivariable sector nonlinearity for any diagonal Λ > 0.

Thus, from the multivariable circle criterion, asymptotic stability of the closed-loop

is guaranteed if the linear system with input ϑ and output Λz is SPR. Indeed, the

LMI (5.11) constitutes the required SPR condition.

If the LMI (5.11) holds with ν = 0, that is, if the linear system in Figure 5.1 with

input ϑ and output Λz is PR but not SPR, then (5.16) guarantees |e(t)| ≤ κ|e(0)|,
but not necessarily e(t) → 0. Under the additional assumption that x(t) ∈ L∞, we

now prove that e(t) still converges to zero exponentially.
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Since (x(t), x̂(t)) ∈ C for all t ≥ 0, the components vi, wi of v and w, defined in (5.6),

remain for all t ≥ 0 in a compact interval Ci, in which

di := sup
vi,wi∈Ci, vi 6=wi

γi(vi) − γi(wi)

vi − wi
(5.22)

is finite, because γi(·) is locally Lipschitz. It follows from (5.3), (5.22), and zi = vi−wi

that whenever zi 6= 0, the inequality

0 ≤ ϕi(t, zi)

zi
≤ di (5.23)

holds for all t ≥ 0. Multiplying the right inequality in (5.23) by 1
di
ziϕ(t, zi), which is

nonnegative by the left inequality, we obtain

1

di
ϕi(t, zi)

2 ≤ ziϕi(t, zi) , (5.24)

and, in view of (5.15),

1

2
V̇ ≤ −

r
∑

i=1

λiziϕi(t, zi) ≤ −
r
∑

i=1

λi

di
ϕi(t, zi)

2 ≤ −b |ϕ(t, z)|2 , (5.25)

where b := mini{λi

di
} > 0. Integrating both sides of (5.25) from t0 to t, we verify that

(5.21) holds with b2 = λmax(P )
2b

. Substituting (5.21) in (5.20), we see that (5.19) holds

with θ2 = b1 + cb2.
�

We now illustrate the use of Theorem 5.2 in a situation where the LMI (5.11)

is not feasible for ν > 0.

Example 5.1 The system

ẋ1 = x2 + x2
1

ẋ2 = x2 + x3 − exp(x2) + u (5.26)

ẋ3 = 2u

y = x1

is of the form (5.1) with %(y, u) = [ y2 u 2u ]T ,

A =







0 1 0

0 1 1

0 0 0






, C = [ 1 0 0 ] , G =







0

−1

0






, H = [ 0 1 0 ] .
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Since the nonlinearity γ(Hx) = γ1(x2) = exp(x2) is nondecreasing as in (5.3), we

proceed with the observer design. With A, C, G and H as above, the LMI (5.11) is

not feasible with ν > 0. However, with ν = 0, it is feasible and a solution is

P =







3 −1 −1

−1 1 0

−1 0 1






, L =







−2

−4

−1






, K = −1 , Λ = 1 . (5.27)

Because A+LC is Hurwitz, we conclude from Theorem 5.2 that the resulting observer

˙̂x1 = x̂2 − 2(x̂1 − y) + y2

˙̂x2 = x̂2 + x̂3 − 4(x̂1 − y) − exp(x̂2 − (x̂1 − y)) + u (5.28)

˙̂x3 = −(x̂1 − y) + 2u

guarantees e(t) → 0 as t→ ∞, if a control law can be designed to ensure x(t) ∈ L∞.

5.2 Reduced-Order Observer

In applications it may be more convenient to employ a reduced-order observer,

which generates estimates only for the unmeasured states. The design of such an ob-

server starts with a preliminary change of coordinates such that the output y consists

of the first p entries of the state vector x = [ yT xT
o ]T . In the new coordinates, the

system (5.1) is

ẏ = A1xo +G1γ(H1y +H2xo) + %1(y, u)

ẋo = A2xo +G2γ(H1y +H2xo) + %2(y, u) , (5.29)

where the linear terms in y are incorporated in %1(y, u) and %2(y, u). An estimate of

xo will be obtained via χ := xo +Ny , where N ∈ IR(n−p)×p is to be designed. From

(5.29), the derivative of χ is:

χ̇ = (A2 +NA1)χ+ (G2 +NG1)γ(H2χ+ (H1 −H2N)y) + %̄(y, u) , (5.30)

where %̄(y, u) := N%1(y, u) + %2(y, u) − (A2 + NA1)Ny. In this χ-subsystem, the

output injection matrix N has altered the A2 and G2 matrices of the xo-subsystem

(5.29).

To obtain the estimate

x̂o = χ̂−Ny , (5.31)
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we employ the observer

˙̂χ = (A2 +NA1)χ̂+ (G2 +NG1)γ(H2χ̂+ (H1 −H2N)y) + %̄(y, u) . (5.32)

From (5.30) and (5.32), the dynamics of eo := xo − x̂o = χ− χ̂ are governed by

ėo = (A2 +NA1)eo + (G2 +NG1)[γ(vo) − γ(wo)] , (5.33)

where vo := H2χ+(H1−H2N)y and wo := H2χ̂+(H1−H2N)y. We let z := vo−wo =

H2eo, and denote ϕ(t, z) = γ(vo) − γ(wo). Then, the nondecreasing property (5.3)

implies that ziϕi(t, zi) ≥ 0 for all i = 1, · · · , r. Derivations similar to those in Section

5.1 yield the following LMI in Po, PoN , ν and Λ:
[

(A2 +NA1)
TPo + Po(A2 +NA1) + νI Po(G2 +NG1) +HT

2 Λ

(G2 +NG1)Po + ΛH2 0

]

≤ 0 . (5.34)

If this LMI is satisfied with a matrix Po = P T
o > 0, a constant ν ≥ 0, and a diagonal

matrix Λ > 0, then it is not difficult to show that, with appropriate modifications,

Theorems 5.1 and 5.2 hold for the observer error eo(t).

To illustrate the analog of Theorem 5.2, we design a reduced-order observer for

the system (5.26).

Example 5.2 The system (5.26) is of the form (5.29) with xo = [x2 x3]
T , %1(y, u) =

y2, %2(y, u) = [u 2u]T ,

A1 = [ 1 0 ] , A2 =

[

1 1

0 0

]

, G1 = 0, G2 =

[

−1

0

]

, H1 = 0, H2 = [ 1 0 ] .

(5.35)

The LMI (5.34) is feasible with ν = 0, and a solution is

Po =

[

1 0

0 1

]

, N =

[

−2

−1

]

, Λ = 1 . (5.36)

Since A2 +NA1 is Hurwitz, the resulting observer

˙̂χ2 = −χ̂2 + χ̂3 − exp(χ̂2 + 2y) + (−2y2 − y + u)

˙̂χ3 = −χ̂2 + (−y2 − 2y + 2u) (5.37)

x̂2 = χ̂2 + 2y

x̂3 = χ̂3 + y

guarantees (e2(t), e3(t)) → 0 as t → ∞, if a control law can be designed to ensure

x(t) ∈ L∞.
�
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5.3 Robustness Against Inexact Modeling of Nonlinear-

ities

Thus far we have assumed exact knowledge of the system nonlinearities. To

analyze the effects of modeling errors, we suppose that instead of (5.1), the system is

ẋ = Ax+G[γ(Hx) + ∆(Hx)µ(t)] + %(y, u) , (5.38)

where µ(t) is a bounded disturbance. Then, the nominal observer (5.4) yields the

observer error system

ė = (A+ LC)e+G [γ(v) − γ(w) + ∆(v)µ(t)] , (5.39)

where v = Hx, w = Hx̂+K(Cx̂− y).

In Theorem 5.3 below, we characterize nonlinearities ∆(·) for which the observer

(5.4) guarantees an ISS property from the disturbance µ(t) to the observer error e(t).

Theorem 5.3 Consider the plant (5.38) and the observer (5.4). Suppose x(t) exists

for all t ≥ 0, and that the LMI (5.11) holds with a matrix P = P T > 0, a constant

ν > 0, and a diagonal matrix Λ > 0. If, for each i = 1, · · · , r, there exists a class-K
function σi(·) such that

(a− b)[γi(a) − γi(b) + ∆i(a)µ] ≥ −σi(|µ|) ∀a, b, µ ∈ IR , (5.40)

then the observer error e(t) satisfies, for all t ≥ 0,

|e(t)| ≤ κ|e(0)| exp(−βt) + ρ

(

sup
0≤τ≤t

|µ(τ)|
)

, (5.41)

where κ =
√

λmax(P )
λmin(P ) , β = ν

2λmax(P ) , and the ISS-gain from µ(t) to e(t) is

ρ(·) = κ

√

√

√

√

2

ν

r
∑

i=1

λi σi(·). (5.42)

Proof: We use V = eTPe as an ISS-Lyapunov function, and evaluate its derivative

for (5.39):

V̇ ≤ −ν|e|2 − 2

r
∑

i=1

λi (vi − wi) [γi(vi) − γi(wi) + ∆i(vi)µ] . (5.43)
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Substituting (5.40), we obtain

V̇ ≤ −ν|e|2 + 2

r
∑

i=1

λi σi(|µ|) ≤ −2βV + 2

r
∑

i=1

λi σi(|µ|) , (5.44)

from which it follows that

V (t) ≤ V (0) exp(−2βt) +
1

β

(

r
∑

i=1

λi sup
0≤τ≤t

σi(|µ(τ)|)
)

. (5.45)

This yields

|e(t)| ≤ κ|e(0)| exp(−βt) +

√

√

√

√

1

βλmin(P )

(

r
∑

i=1

λi sup
0≤τ≤t

σi(|µ(τ)|)
)

(5.46)

and, (5.41) and (5.42) are obtained by substituting 1
βλmin(P ) = 2κ2

ν
.

�

The ISS property established by Theorem 5.3 shows that e(t) degrades grace-

fully with the increase in the magnitude of the disturbance µ(t). As µ(t) vanishes,

we recover the convergence result of Theorem 5.1. The dependence of admissible

nonlinearities ∆(·) on γ(·) is characterized by (5.40). For example, if γ(·) is cubic,

then ∆(·) is allowed to be linear. In this case, (5.40) is satisfied because

(a− b)[a3 − b3 + aµ] ≥ −1

3
µ2 (5.47)

holds for all a, b, µ ∈ IR, due to the identity a3 − b3 = (a − b)(a2 + ab+ b2). On the

other hand, (5.40) does not hold for cubic γ(·) and quadratic ∆(·). To see this, we

evaluate (a− b)[a3 − b3 + a2µ] with b = a+ 1
a
, and note that, for any fixed µ > 0, the

resulting function 3 + 3
a2 + 1

a4 − aµ tends to −∞ as a→ +∞, thus violating (5.40).

It is not difficult to prove the analog of Theorem 5.3 for the reduced-order

observer (5.32), in which case e(t) is to be replaced by eo(t).

5.4 Summary

An observer design is presented for systems with monotone nonlinearities in

the unmeasured states. The new design represents the observer error system as the

feedback interconnection of a linear system and a multivariable sector nonlinearity.

The issues of existence and the evaluation of the observer matrices K and L satisfying

the circle criterion are resolved by efficient LMI computations. The robustness of the

new observer to inexact modeling of nonlinearities is analyzed, and ISS bounds are

derived within which the observer error increases with an increase in the modeling

error.
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Chapter 6

Feasibility Conditions for the Observer

Design

Thus far, the feasibility of our observer design was left to be resolved by iterative

LMI computations. In this chapter we derive structural conditions that characterize

feasibility. We first show that rendering a linear system SPR by output injection

is equivalent to rendering its dual system SPR by control. Then, we characterize

the feasibility of this dual problem, and use it to establish necessary and sufficient

feasibility conditions for the observer design.

The duality property is discussed in Section 6.1. The feasibility of the dual

problem is studied in Section 6.2. In Section 6.3, we give the feasibility conditions

for the observer design, and illustrate them on examples. Finally, in Section 6.4, we

prove that the feasibility conditions for the reduced-order observer are the same as

those for the full-order observer. The lengthy proofs are given in Section 6.5.

6.1 The Dual Problem

The observer design in the previous chapter relied on solving the LMI (5.11),

rewritten here as

(A+ LC)TP + P (A+ LC) < 0 (6.1)

PG+ (H +KC)T Λ = 0. (6.2)

Multiplying the inequality (6.1) from both sides by P := P −1, and multiplying the

equality (6.2) from the left by P, and from the right by Ω := Λ−1, we obtain

P(A + BF) + (A + BF)TP < 0 (6.3)

P(G + BE) + HT Ω = 0, (6.4)
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left to be resolved by iterative LMI computations. None of the feedback passivation

conditions in the literature are applicable to the feasibility problem for the design in

Figure 6.1. The results such as Fradkov [16], and Kokotović and Sussmann [47], deal

with ‘direct’ passivation for the control input u, and not with ‘indirect’ passivation

for the disturbance input w. Recent indirect passivation conditions derived in the

H∞-framework by Safonov et al. [80], Haddad and Bernstein [22], Sun et al. [90],

and Turan et al. [100] assume that the relative degree from w to z is zero, which does

not hold for (6.6)-(6.7).

6.2 Feasibility of the Circle Criterion Design

In this section we derive structural conditions that completely characterize the

feasibility of the circle criterion design. This result will be used in the next section

to establish feasibility conditions for the observer design. To simplify the derivations,

we restrict our analysis to a single nonlinearity, that is, Ω and E in (6.3)-(6.4) are

scalars. We let Ω = 1, E = ρ, and analyze the existence of F , ρ and P = P T > 0

satisfying

(A + BF)TP + P(A + BF) < 0 (6.9)

P(G + ρB) + HT = 0. (6.10)

The case where ρ is constrained to be zero is of separate interest, because then the

control law (6.8) can be implemented without the exact knowledge of the nonlinearity

w = −φ(t, z).

After a change of coordinates and a preliminary state feedback, the system

(6.6)-(6.7) is represented as

ξ̇ = A0ξ +E0y1 +G0w (6.11)

ẏ1 = y2 + g1w

ẏ2 = y3 + g2w
... (6.12)

ẏr = u+ grw

z = y1, (6.13)

where ξ ∈ IRn−r, and r is the relative degree from the output z to the control input u.

As will be shown later, a crucial ingredient of the feasibility problem is the existence

of a matrix Y = Y T > 0 satisfying

A0Y + Y AT
0 + 2E0G

T
0 + 2G0E

T
0 < 0, (6.14)
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or, equivalently,

A0Y + Y AT
0 < −(E0 +G0)(E0 +G0)

T + (E0 −G0)(E0 −G0)
T .

When A0 is Hurwitz, the existence of Y is immediate. If A0 is not Hurwitz, we

decompose the ξ-subsystem (6.11) into three subsystems,

ξ̇i = Ai
0ξi +Ei

0x1 +Gi
0w, i = 1, 2, 3, (6.15)

such that σ(A1
0) ⊂ |C+, σ(A2

0) ⊂ |C0, σ(A3
0) ⊂ |C−, and consider U = UT , V = V T

defined by

A1
0U + UA1

0
T

= (E1
0 −G1

0)(E
1
0 −G1

0)
T (6.16)

A1
0V + V A1

0
T

= (E1
0 +G1

0)(E
1
0 +G1

0)
T. (6.17)

Theorem 6.1 (ρ = 0) A state feedback control law u = Fx that renders (6.11)-(6.13)

SPR from w to z = y1 exists if and only if

g1 > 0, g2 < 0, U − V >
2

g1
G1

0G
1
0
T
, (6.18)

and

w∗(E2
0 −G2

0)(E
2
0 −G2

0)
Tw > w∗(E2

0 +G2
0)(E

2
0 +G2

0)
Tw (6.19)

for every eigenvector w of A2
0

T
.

�

The proof is given in Section 6.5.

As a corollary, we give the feasibility conditions for the case ρ 6= 0, when the

control law u = Fx + ρw can arbitrarily assign g̃r = gr + ρ in (6.12). If r ≥ 3, the

feasibility conditions for ρ 6= 0 are the same as in Theorem 6.1, because they do not

depend on gr. However, if r = 2, then g2 < 0 is not required because we can use ρ to

satisfy g̃2 < 0. Likewise, if r = 1 then g1 > 0 is no longer required. Moreover, since

g̃1 > 0 can be arbitrarily large, U − V > 2
g1
G1

0G
1
0
T

is replaced by the less restrictive

condition U > V .

Corollary 6.1 (ρ 6= 0) When r = 1, a control law u = Fx+ ρw that renders (6.11)-

(6.13) SPR from w to z = y1 exists if and only if U > V and (6.19) holds for every

eigenvector w of A2
0

T
. When r = 2, g1 > 0 and U − V > 2

g1
G1

0G
1
0
T

are required in

addition. When r ≥ 3, all the conditions of Theorem 6.1 are required.
�
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6.3 Feasibility of the Observer Design

We now derive necessary and sufficient conditions for the feasibility of the ob-

server design. For the system

ẋ = Ax+Gγ(Hx) + %(y, u) (6.20)

y = Cx ,

with a single output y ∈ IR, and a single nondecreasing nonlinearity γ(·), we determine

when the LMI
[

(A+ LC)TP + P (A+ LC) + νI PG+ (H +KC)T

GTP + (H +KC) 0

]

≤ 0, (6.21)

is feasible. When ν = 0 is allowed as in Theorem 5.2, the feasibility conditions become

cumbersome, therefore we restrict our discussion to feasibility with ν > 0.

We omit %(y, u) and the linear terms in y from the right-hand side of (5.1) be-

cause they do not affect feasibility, and represent the resulting system in the following

canonical form

y = y1

ẏ1 = y2

ẏ2 = y3

· · · (6.22)

ẏr = Πξ − γ(Σξ + σ1y1 + · · · + σryr)

ξ̇ = Sξ,

where r is the relative degree from the output y to the nonlinearity γ(·). Next, we

decompose S, Π, and Σ as

S =







S1 0 0

0 S2 0

0 0 S3






, Π = [Π1 Π2 Π3 ], Σ = [Σ1 Σ2 Σ3 ], (6.23)

where σ(S1) ⊂ |C+, σ(S2) ⊂ |C0, σ(S3) ⊂ |C−, and define U = UT , V = V T by

ST
1 U + US1 = (Π1 − Σ1)

T (Π1 − Σ1) (6.24)

ST
1 V + V S1 = (Π1 + Σ1)

T (Π1 + Σ1). (6.25)

Using Theorem 6.1, Corollary 6.1, and the duality argument in Section 6.1, it is not

difficult to prove the following result:
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Theorem 6.2 The LMI (6.21) is feasible with ν > 0 and K = 0 if and only if

σr > 0, σr−1 < 0, U − V >
2

σr
ΣT

1 Σ1, (6.26)

and

w∗(Π2 − Σ2)
T (Π2 − Σ2)w > w∗(Π2 + Σ2)

T (Π2 + Σ2)w (6.27)

for every (possibly complex) eigenvector w of S2.

If the restriction K = 0 is removed, then these conditions are relaxed as follows:

When r = 1, the LMI (6.21) is feasible with ν > 0 if and only if U > V and (6.27)

holds for every eigenvector w of S2. When r = 2, σr > 0 and U − V > 2
σr

ΣT
1 Σ1 are

also required. When r ≥ 3, all the conditions for feasibility with K = 0 above are

required.
�

Example 6.1 With y = x1, and the nondecreasing nonlinearity γ(x3) = x3
3, the

system

ẋ1 = x1 + x2 + x3
3

ẋ2 = −x2 + x3 (6.28)

ẋ3 = u,

is of the form (6.20). Omitting y = x1 and u from the right-hand side of (6.28), and

using the change of variables ξ2 = −x3, ξ3 = x2 − x3, we obtain

ẏ = −ξ2 + ξ3 − γ(ξ2)

ξ̇2 = 0 (6.29)

ξ̇3 = −ξ3,

which is of the form (6.22). With the restriction K = 0, the observer design is not

feasible because σr = 0. When the restriction K = 0 is removed, the design is feasible

because r = 1, the eigenvalues of S are λ2 = 0, λ3 = −1, and (6.27) holds for

the ξ2-subsystem with S2 = 0, Π2 = −1, Σ2 = 1. A solution of the LMI (6.21) is

L = [−0.6929 − 0.5621 − 0.4814]T , K = −3.2417 and, hence, the resulting observer

is

˙̂x1 = −0.6929(x̂1 − y) + y + x̂2 + (x̂3 − 3.2417(x̂1 − y))3

˙̂x2 = −0.5621(x̂1 − y) − x̂2 + x̂3 (6.30)

˙̂x3 = −0.4814(x̂1 − y) + u.
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Example 6.2 Consider again the system (6.28), but with −x2 in the second equation

replaced with x2:

ẋ1 = x1 + x2 + x3
3

ẋ2 = x2 + x3 (6.31)

ẋ3 = u.

With y = x1, the omission of x1 and u from the right-hand side, and the change of

variables ξ1 = x2 + x3, ξ2 = −x3, we get

ẏ = ξ1 + ξ2 − γ(ξ2)

ξ̇1 = ξ1 (6.32)

ξ̇2 = 0,

where the eigenvalues of S are λ1 = 1 and λ2 = 0. The observer design is not feasible

even with K 6= 0 because U > V does not hold for the ξ1-subsystem with S1 = 1,

Π1 = 1, Σ1 = 0. Thus, the sign in front of x2 in the second equation of (6.28) is

crucial.
�

6.4 Feasibility of the Reduced-Order Observer

We now show that the feasibility conditions for the reduced-order observer design

are the same as those for the full-order observer.

Theorem 6.3 Let the constant ν ≥ 0 and the diagonal matrix Λ > 0 be given. Then,

the following two statements are equivalent:

1. There exist matrices P = P T > 0, K and L satisfying the full-order observer

LMI (5.11).

2. There exist matrices Po = P T
o > 0 and N satisfying the reduced-order observer

LMI (5.34).

Proof:

(1 ⇒ 2) Suppose the full-order observer LMI (5.11) is feasible for the system (5.29).

Partitioning P and L as

P =

[

P1 P2

P T
2 P3

]

, L =

[

L1

L2

]

, (6.33)
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and substituting

A =

[

0 A1

0 A2

]

, G =

[

G1

G2

]

, H = [H1 H2 ], and C = [ I 0 ] (6.34)

in (5.11), we obtain

(A+ LC)TP + P (A+ LC) + νI = (6.35)
[

? ?

? P3(A2 + P−1
3 P T

2 A1) + (A2 + P−1
3 P T

2 A1)
TP3 + νI

]

≤ 0

PG+ (H +KC)TΛ =

[

?

P3(G2 + P−1
3 P T

2 G1) +HT
2 Λ

]

= 0. (6.36)

Defining Po := P3, and N := P−1
3 P T

2 , we note that (6.35) and (6.36) imply

Po(A2 +NA1) + (A2 +NA1)
TPo + νI ≤ 0 (6.37)

Po(G2 +NG1) +HT
2 Λ = 0, (6.38)

which is the reduced-order observer LMI (5.34).

(2 ⇒ 1) Suppose (6.37) and (6.38) hold for the system (5.29). To prove the existence

of P = P T > 0, K and L satisfying (5.11), we rewrite system (5.29) in y and

χ = xo +Ny coordinates, so that

A+ LC =

[

L̃1 A1

L̃2 A2 +NA1

]

, G =

[

G1

G2 +NG1

]

, (6.39)

H +KC = [H1 −H2N +K H2 ],

where L̃1 := L1 −A1N and L̃2 = L2 − (A2 +NA1)N . We let

P =

[

I 0

0 Po

]

, (6.40)

and obtain

(A+ LC)TP + P (A+ LC) =

[

L̃1 + L̃T
1 A1 + L̃T

2 Po

PoL̃2 +AT
1 Po(A2 +NA1) + (A2 +NA1)

TPo

]

PG+ (H +KC)T Λ =

[

G1 + (H1 −H2N +K)T Λ

Po(G2 +NG1) +HT
2 Λ

]

. (6.41)
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In view of (6.37) and (6.38), the choice

L̃1 = −ν
2
I, L̃2 = −P−1

0 AT
1 , K = −H1 +H2N − Λ−1GT

1 (6.42)

results in

(A+ LC)TP + P (A+ LC) + νI ≤ 0

PG+ (H +KC)TΛ = 0,

which is the full-order observer LMI (5.11).
�

6.5 Proof of Theorem 6.1

We prove the theorem in two steps. In Step 1 we prove that a state feedback

control law u = Fx, rendering (6.11)-(6.13) SPR from w to z, exists if and only

if g1 > 0, g2 < 0, and Y = Y T > 2
g1
G0G

T
0 can be found such that (6.14) holds.

In Step 2, we show that Y = Y T > 2
g1
G0G

T
0 satisfying (6.14) exists if and only if

U − V > 2
g1
G1

0G
1
0
T

and (6.19) holds for every eigenvector of A2
0
T
.

Step 1 - Necessity: Suppose u = Fx renders (6.11)-(6.13) SPR from w to z = y1,

let X := P−1, and rewrite (6.9)-(6.10) as

(A + BF)X +X(A + BF)T < 0 (6.43)

XHT + G = 0 (6.44)

which, for system (6.11)-(6.13), yields

H = [ 01×(n−r) − 1 0 · · · 0 ]

GT = [G0 g1 · · · gr ]

}

⇒ X =













X0 G0 ? ?

GT
0 g1 · · · gr

?
... ? ?

? gr ? ?













. (6.45)

Then, g1 > 0 because X > 0, and g2 < 0 because, from (6.11) and (6.45),

(A + BF)X +X(A + BF)T =











A0X0 +X0A
T
0 +E0G

T
0 +G0E

T
0 ? ? ?

? 2g2 ? ?

? ? ? ?

? ? ? ?











< 0.

(6.46)
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This also shows that Y = 2X0 satisfies (6.14). Then, Y > 2
g1
G0G

T
0 follows from (6.45)

because
[

X0 G0

GT
0 g1

]

> 0, (6.47)

and the Schur complement of g1 is X0 − 1
g1
G0G

T
0 > 0.

Step 1 - Sufficiency: For r = 1, the equations (6.11)-(6.13) are

ξ̇ = A0ξ +E0y1 +G0w (6.48)

ẏ1 = u+ g1w. (6.49)

For this system H = [01×(n−r) − 1], and (6.44) is satisfied by

X =

[

1
2Y G0

GT
0 g1

]

> 0 (6.50)

where Y is as in (6.14). Substituting

F =
[

κGT
0 Y

−1 − κ

2

]

, κ > 0 (6.51)

in (6.43), we obtain

(A + BF)X +X(A + BF)T = (6.52)
[

1
2A0Y + 1

2Y A
T
0 +E0G

T
0 +G0E

T
0 A0G0 + g1E0

(A0G0 + g1E0)
T −κ(g1 − 2GT

0 Y
−1G0)

]

.

From (6.50), g1−2GT
0 Y

−1G0 > 0 and, hence, the right-hand side of (6.52) is rendered

negative definite by selecting κ > 0 sufficiently large.

For r ≥ 2, we need the following lemma proved at the end of the section:

Lemma 6.1 With input w ∈ IR and output z ∈ IR, the system

η̇ = Mη +Nz (6.53)

ż = Lη − az + gw (6.54)

is SPR if and only if a > 0, g > 0, and the L2-gain of the system

η̇ =

(

M +
1

2a
NL

)

η +Nv (6.55)

y = Lη

from input v to output y is γ < 2a.
�
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With the change of coordinates

z = y1, ξ̄ = ξ − 1

g1
G0y1, ȳi = yi −

gi

g1
y1, i = 2, · · · , r, (6.56)

the system (6.11)-(6.13) is rewritten as

˙̄ξ = A0ξ̄ −
1

g1
G0ȳ2 +

(

1

g1
A0G0 +E0 −

g2
g2
1

G0

)

z (6.57)

˙̄yi = ȳi+1 −
gi

g1
ȳ2 −

gig2
g2
1

z, i = 2, · · · , r − 1, (6.58)

˙̄yr = u− gr

g1
ȳ2 −

grg2
g2
1

z (6.59)

ż = ȳ2 +
g2
g1
z + g1w, (6.60)

which is (6.53)-(6.54) with η = (ξ̄T , ȳ2, · · · , ȳr)
T , Lη = ȳ2, a = − g2

g1
, and g = g1.

Since g1 > 0 and g2 < 0, we conclude that a > 0 and g > 0 as in Lemma 6.1. The

system (6.55) in Lemma 6.1 is

˙̄ξ = A0ξ̄ +R0ȳ2 +Q0v (6.61)

˙̄yi = ȳi+1 −
gi

2g1
ȳ2 −

gig2
g2
1

v, i = 2, · · · , r − 1, (6.62)

˙̄yr = u− gr

2g1
ȳ2 −

grg2
g2
1

v (6.63)

y = ȳ2, (6.64)

where

R0 = −
(

1

2g2
A0G0 +

g1
2g2

E0 +
1

2g1
G0

)

and Q0 =

(

1

g1
A0G0 +E0 −

g2
g2
1

G0

)

.

(6.65)

Next, we show that there exists a state feedback control law for u that assigns an

L2-gain γ < 2a from input v to output y = ȳ2. It was shown by Isidori [27, Section

13.2] and Chen [10, Chapter 5] that a control law ensuring γ < 2a exists if and only

if there exists a matrix Z = ZT > 0 satisfying

A0Z + ZAT
0 +

1

(2a)2
Q0Q

T
0 −R0R

T
0 < 0. (6.66)

Substituting a = − g2

g1
, Q0 and R0 from (6.65), it is not difficult to verify that (6.66)

holds for

Z = − 1

4g2

(

Y − 2

g1
G0G

T
0

)

, (6.67)
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where Y satisfies (6.14). Moreover, Z > 0 because g2 < 0 and Y > 2
g1
G0G

T
0 . This

means that there exists u = Fx such that γ < 2a, thus rendering (6.11)-(6.13) SPR

from w to z, by Lemma 6.1.

Step 2 - Necessity: Suppose that

Y = Y T =







Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33






>

2

g1
G0G

T
0 (6.68)

satisfies (6.14). Then, Yii >
2
g1
Gi

0G
i
0
T
, i = 1, 2, 3, and

Ai
0Yii + YiiA

i
0
T
< −(Ei

0 +Gi
0)(E

i
0 +Gi

0)
T + (Ei

0 −Gi
0)(E

i
0 −Gi

0)
T . (6.69)

Because −A1
0 is Hurwitz, it follows that there exists Ỹ11 > Y11 >

2
g1
G1

0G
1
0
T

satisfying

A1
0Ỹ11 + Ỹ11A

1
0
T

= −(E1
0 +G1

0)(E
1
0 +G1

0)
T + (E1

0 −G1
0)(E

1
0 −G1

0)
T . (6.70)

From (6.16) and (6.17), the solution of (6.70) is Ỹ11 = U −V , and U − V > 2
g1
G1

0G
1
0
T

follows from Ỹ11 >
2
g1
G1

0G
1
0
T
.

For (6.69) with i = 2, the following lemma due to Scherer [82, Theorem 4] shows

that (6.19) holds for every eigenvector w of A2
0

T
:

Lemma 6.2 Let all the eigenvalues of A be on the imaginary axis, and let Q be an

arbitrary matrix. Then, there exists X = XT > 0 such that

AX +XAT < Q (6.71)

if and only if

w∗Qw > 0 (6.72)

for every eigenvector w of AT . Moreover, if (6.72) holds, then for any X0, there

exists X > X0 satisfying (6.71).
�

Step 2 - Sufficiency: Let Y33 = Y T
33 > 0 be the solution of A3

0Y33 + Y33A
3
0
T

= −kI,
and denote

Ã0 =

[

A1
0 0

0 A2
0

]

, Ẽ0 =

[

E1
0

E2
0

]

, G̃0 =

[

G1
0

G2
0

]

. (6.73)

If there exists Ỹ = Ỹ T > 2
g1
G̃0G̃

T
0 such that
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Ã0Ỹ + Ỹ ÃT
0 < −(Ẽ0 + G̃0)(Ẽ0 + G̃0)

T + (Ẽ0 − G̃0)(Ẽ0 − G̃0)
T , (6.74)

then

Y =

[

Ỹ 0

0 Y33

]

(6.75)

satisfies (6.14), and Y > 2
g1
G0G

T
0 for large enough k > 0. To prove (6.74), we use

A1
0Y11 + Y11A

1
0
T

< −(E1
0 +G1

0)(E
1
0 +G1

0)
T + (E1

0 −G1
0)(E

1
0 −G1

0)
T (6.76)

A2
0Y22 + Y22A

2
0
T

< −(E2
0 +G2

0)(E
2
0 +G2

0)
T + (E2

0 −G2
0)(E

2
0 −G2

0)
T , (6.77)

where 2
g1
G1

0G
1
0
T
< Y11 < Ỹ11 = U − V because −A1

0 is Hurwitz, and Y22 = Y T
22 > 0 in

view of Lemma 6.2 and (6.19). Then

Ỹ =

[

Y11 Y12

Y T
12 Y22

]

(6.78)

satisfies

Ã0Ỹ + Ỹ Ã0 + (Ẽ0 + G̃0)(Ẽ0 + G̃0)
T − (Ẽ0 − G̃0)(Ẽ0 − G̃0)

T =

[

Q1 0

0 Q2

]

Q1 = A1
0Y11 + Y11A

1
0
T

+ (E1
0 +G1

0)(E
1
0 +G1

0)
T − (E1

0 −G1
0)(E

1
0 −G1

0)
T < 0

Q2 = A2
0Y22 + Y22A

2
0
T

+ (E2
0 +G2

0)(E
2
0 +G2

0)
T − (E2

0 −G2
0)(E

2
0 −G2

0)
T < 0,

and Y12 satisfies the corresponding Sylvester equation. Finally, Ỹ > 2
g1
G̃0G̃

T
0 follows

because Y11 >
2
g1
G1

0G
1
0
T

and, from Lemma 6.2, Y22 can be selected sufficiently large.
�

Proof of Lemma 6.1

Let the system (6.53)-(6.54) be SPR, that is, let P = P T > 0 exist such that

ATP + PA < 0 (6.79)

PB = CT , (6.80)

where

A =

[

M N

L −a

]

, B =

[

0

g

]

, C =

[

0

1

]T

. (6.81)
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Because of (6.80), P has the form

P =
1

g

[

P0 0

0 1

]

> 0, (6.82)

which implies g > 0. Using (6.81) and (6.82),

ATP + PA =

[

P0M +MTP0 P0N + LT

NTP0 + L −2a

]

< 0, (6.83)

from which a > 0, and the Schur complement of −2a is

P0

(

M +
1

2a
NL

)

+

(

M +
1

2a
NL

)T

P0 +
1

2a
P0NN

TP0 +
1

2a
LTL < 0. (6.84)

From the bounded real lemma, (6.84) holds if and only if the L2-gain of the system

(6.55) is γ < 2a.

To prove the converse, we note that if the L2-gain of the system (6.55) is γ < 2a,

then there exists P0 = P T
0 > 0 satisfying (6.84). Because a > 0 and g > 0, (6.82)

satisfies (6.79) and (6.80).
�

6.6 Summary

We have derived necessary and sufficient conditions for the feasibility of the

observer design. The result is established by showing that the observer design is

dual to a control design in which a linear system is rendered SPR with respect to a

disturbance input. We have proved that the feasibility of the reduced-order observer

design coincides with that of the full-order observer.
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Chapter 7

Robust Output-Feedback Design

As with any other observer, the main purpose of the new observer is stabiliza-

tion and tracking in conjunction with a control law u = α(y, x̂, t) which employs the

available measurement y, the state estimate x̂ and, possibly, exogenous signals. Be-

cause the separation principle does not hold for nonlinear systems, our observer is

to be used with control laws that guarantee boundedness of the states for bounded

observer errors. This design strategy is detailed in Section 7.1, and illustrated on

an analytical example. In Section 7.2 we study the effect of unmodeled dynamics,

and propose a small-gain design for robust output-feedback control. This small-gain

design is illustrated on the jet engine compressor example in Section 7.3.

7.1 Observer-Based Control Design

We view the state observer error e = x − x̂ as a disturbance acting on the

system (5.1) through the control law u = α(y, x − e, t) and require that the control

law guarantee one of the following properties:

No Finite Escape (NFE) Property:

e(t) ∈ L∞ ⇒ x(t) ∈ Le
∞ , ∀x(0) ∈ IRn. (7.1)

Bounded Error - Bounded State (BEBS) Property:

e(t) ∈ L∞ ⇒ x(t) ∈ L∞ , ∀x(0) ∈ IRn. (7.2)

If u = α(y, x̂, t) is a NFE control law for the system (5.1), then the assumption that

x(t) ∈ Le
∞ made in Theorem 5.1 holds. To see this, suppose that the maximal interval

of existence is finite. On this interval, e(t) is bounded because of (5.16). If x(t) were

unbounded, this would contradict the NFE property (7.1), thus x(t) exists for all
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t ≥ 0. Likewise, if u = α(y, x̂, t) is a BEBS control law, then x(t) ∈ L∞, as required

in Theorem 5.2. To guarantee x(t) ∈ Le
∞ for the system (5.38), the NFE property is

to hold for all bounded disturbances µ(t).

The BEBS property incorporates the NFE property. Requiring these properties

is meaningful because BEBS control laws have already been designed for classes of

nonlinear systems by Freeman and Kokotović [18], Krstić et al. [53], and Marino and

Tomei [63]. We now illustrate the use of our observer for output-feedback design in

conjunction with the observer backstepping design of Krstić et al. [53].

Example 7.1 For the system

ẋ1 = x2 + x2
1

ẋ2 = x2 + x3 − exp(x2) + u (7.3)

ẋ3 = 2u ,

studied in Example 5.1, suppose that the output y = x1 is required to track yd(t),

where yd(t), ẏd(t), and ÿd(t) are known, continuous and bounded on [0,∞). Using the

observer (5.28), we design a BEBS control law u = α(y, x̂, t) that ensures asymptotic

tracking and boundedness of the states. Since the system (7.3) with output y has

relative degree two, we apply two steps of observer backstepping as in Krstić et al.

[53, Section 7.1].

Step 1. We let ζ1 := y− yd, substitute x2 = x̂2 + e2 and x1 = y in the first equation

of (7.3), and obtain

ζ̇1 = x̂2 + y2 − ẏd + e2 . (7.4)

For x̂2, we design the ‘virtual’ control law

α0(y, yd, ẏd) = −c1ζ1 − y2 + ẏd , c1 > 0, (7.5)

which results in

ζ̇1 = −c1ζ1 + ζ2 + e2 , (7.6)

where ζ2 := x̂2 − α0(y, yd, ẏd) .

Step 2. Using the observer equation (5.28), we get

ζ̇2 = u+ g(y, yd, ẏd, ÿd, x̂) − ∂α0

∂y
e2 , (7.7)
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where

g(y, yd, ẏd, ÿd, x̂) = x̂2 + x̂3 − exp(x̂2 − (x̂1 − y)) − 4(x̂1 − y)

−∂α0

∂yd
ẏd −

∂α0

∂ẏd
ÿd −

∂α0

∂y

(

x̂2 + y2
)

. (7.8)

We let c2 > 0, d > 0, and

u = α(y, x̂, t) = −ζ1 − c2ζ2 − d

(

∂α0

∂y

)2

ζ2 − g(y, yd, ẏd, ÿd, x̂) , (7.9)

which yields

ζ̇2 = −ζ1 − c2ζ2 − d

(

∂α0

∂y

)2

ζ2 −
∂α0

∂y
e2 . (7.10)

We prove that (7.9) is a BEBS control law with the Lyapunov function W (ζ1, ζ2) =
1
2ζ

2
1 + 1

2ζ
2
2 . Differentiation along (7.6), (7.10), and completion of squares yield

Ẇ ≤ −c1
2
ζ2
1 − c2ζ

2
2 +

(

1

2c1
+

1

4d

)

e22 ≤ −c0W + d0 e
2
2 , (7.11)

where c0 = min{c1, 2c2} and d0 = 1
4d

+ 1
2c1

. From (7.11), boundedness of e(t) guar-

antees that ζ1, ζ2 and, hence, x1 and x2 are bounded. To see that x3 is also bounded,

we define the new variable η := x3 − 2x2, governed by

η̇ = −2η − 6x2 + 2 exp(x2) . (7.12)

Since x2 is bounded, (7.12) guarantees boundedness of η, therefore x3 is also bounded.

The conditions of Theorem 5.2 being satisfied, the observer (5.28) guarantees

e(t) → 0 as t → ∞. From (7.11), we see that e(t) → 0 ensures ζ(t) → 0 as t → ∞.

Since ζ1 = y − yd, we conclude that the observer-based control law (7.9) guarantees

y(t) → yd(t) as t→ ∞.
�

7.2 Robust Output-Feedback Stabilization

We now consider the problem of output-feedback stabilization for the locally

Lipschitz system

ẋ = Ax+G[γ(Hx) + ∆(Hx)µ] + %(y, u) , y = Cx , (7.13)

ξ̇ = q(ξ, h(x)) (7.14)

µ = p(ξ, h(x)) ,
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law u = α(y, x̂) is to render ρhe(·) and ρhµ(·) small enough for the inner loop gain

ρhµ ◦ ρµh(·), and the outer loop gain ρhe ◦ ρeµ ◦ ρµh(·) to satisfy, for all s > 0,

ρhµ ◦ ρµh(s) < s (7.18)

ρhe ◦ ρeµ ◦ ρµh(s) < s . (7.19)

Then, GAS of the closed-loop system will be guaranteed as in the nonlinear small-gain

theorem of Teel et al. [39, 93].

Theorem 7.1 Consider the system (7.13)-(7.14), in which γ(·) and ∆(·) satisfy

(5.40), and the ξ-subsystem satisfies (7.15) and (7.16). Suppose that the observer

˙̂x = Ax̂+ L(Cx̂− y) +Gγ(Hx̂+K(Cx̂− y)) + %(y, u) (7.20)

is such that the LMI (5.11) holds with a matrix P = P T > 0, a constant ν > 0, and

a diagonal matrix Λ > 0. If the control law u = α(y, x̂) guarantees

|h(x(t))| ≤ max

{

βh(|x(0)|, t), ρhµ

(

sup
0≤τ≤t

|µ(τ)|
)

, ρhe

(

sup
0≤τ≤t

|e(τ)|
)}

(7.21)

|x(t)| ≤ max

{

βx(|x(0)|, t), ρxµ

(

sup
0≤τ≤t

|µ(τ)|
)

, ρxe

(

sup
0≤τ≤t

|e(τ)|
)}

(7.22)

where ρhµ(·) and ρhe(·) satisfy (7.18) and (7.19), respectively, then the origin of the

closed-loop system (7.13), (7.14), (7.20) is globally asymptotically stable.

Proof: Using the notation ‖h‖t := sup0≤τ≤t |h(x(τ))| for each t in the maximal

interval of existence [0, tf ), and substituting (7.15) in (7.17), we get

‖e‖t ≤ max {βe(|e(0)|, 0), ρeµ ◦ βµ(|ξ(0)|, 0), ρeµ ◦ ρµh(‖h‖t) } . (7.23)

We then substitute (7.23) and (7.17) in (7.21), and obtain

‖h‖t ≤ max {δh(|x(0)|, |ξ(0)|, |e(0)|), ρhµ ◦ ρµh(‖h‖t), ρhe ◦ ρeµ ◦ ρµh(‖h‖t)} ,
(7.24)

where

δh(|x(0)|, |ξ(0)|, |e(0)|) := (7.25)

max {βh(|x(0)|, 0), ρhµ ◦ βµ(|ξ(0)|, 0), ρhe ◦ βe(|e(0)|, 0), ρhe ◦ ρeµ ◦ βµ(|ξ(0)|, 0)} .

The substitution of the small-gain conditions (7.18) and (7.19) in (7.24) results in

‖h‖t ≤ δh(|x(0)|, |ξ(0)|, |e(0)|) , (7.26)
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and, from (7.15) and (7.23), it is not difficult to derive functions δµ and δe of the

initial conditions such that ‖µ‖t ≤ δµ and ‖e‖t ≤ δe. Then, in view of (7.16) and

(7.22), we can find a class-K function Ω(·) such that, for each t ∈ [0, tf ),

|(x(t), ξ(t), e(t))| ≤ Ω(|(x(0), ξ(0), e(0))|) . (7.27)

Since the right hand side of (7.27) is independent of t, we conclude that tf = ∞, and

the origin is Lyapunov stable.

To prove GAS, the remaining task is to prove convergence of the solutions to

the origin. To this end, we denote ‖h‖a := lim supt→∞ |h(x(t))| as in Teel [93], and

note from (7.27) that ‖h‖a, ‖µ‖a and ‖e‖a are finite. Then, from (7.15), (7.23) and

(7.21),

‖µ‖a ≤ ρµh(‖h‖a) (7.28)

‖e‖a ≤ ρeµ ◦ ρµh(‖h‖a) (7.29)

‖h‖a ≤ max{ρhµ(‖µ‖a), ρhe(‖e‖a)} . (7.30)

The substitution of (7.28) and (7.29) in (7.30), and the use of (7.18) and (7.19) yield

‖µ‖a = ‖e‖a = ‖h‖a = 0, thus proving the convergence of µ(t), e(t) and h(x(t)) to

zero. Then, the ISS conditions (7.16) and (7.22) imply (x(t), ξ(t), e(t)) → 0.
�

7.3 Design Example

An axial compressor model, which has been the starting point for jet engine

control studies, is the following single-mode approximation of a PDE model due to

Moore and Greitzer [65],

φ̇ = −ψ +
3

2
φ+

1

2
− 1

2
(φ+ 1)3 − 3(φ + 1)R (7.31)

ψ̇ =
1

β2
(φ+ 1 − u) (7.32)

Ṙ = σR(−2φ− φ2 −R) , R(0) ≥ 0 , (7.33)

where φ and ψ are the deviations of the mass flow and the pressure rise from their set

points, the control input u is the flow through the throttle, and, σ and β are positive

constants. This model captures the main surge instability between the mass flow and

the pressure rise. It also incorporates the nonnegative magnitude R of the first stall

mode.

Krstić et al. designed a state feedback GAS control law in [53, Section 2.4], and

later replaced it by a design using φ and ψ in [52]. With a high-gain observer, Isidori
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[27, Section 12.7], and Maggiore and Passino [58], obtained a semiglobal result using

the measurement of ψ alone. With y = ψ, we will now achieve GAS for (7.31)-(7.33).

The exact observer cannot be designed because of the nonlinearities φR and φ2R.

However, the (φ, ψ)-subsystem (7.31),(7.32) contains the nondecreasing nonlinearity

(φ + 1)3, and is of the form (7.13) with disturbance µ = R. This suggests that we

treat the R-subsystem (7.33) as unmodeled dynamics and apply the design of Section

7.2.

First, we prove that µ = R satisfies the IOS property (7.15) with h(x) = φ as the

input. With V = R2 as an ISS-Lyapunov function, R ≥ 2.1|φ| implies V̇ ≤ −0.09σR3,

because R(t) ≥ 0 for all t ≥ 0. This means that (7.15) holds with the linear gain

ρµh(·) = 2.1(·) , (7.34)

and, since µ = ξ = R, the ISS property (7.16) is also satisfied.

To design the reduced-order observer of Section 5.2 for the (φ, ψ)-subsystem, we

let χ = φ+Nψ, and obtain

χ̇ =

(

3

2
+
N

β2

)

χ− 1

2
(χ−Nψ + 1)3 − 3(χ−Nψ + 1)R + %̄(ψ, u) , (7.35)

where

%̄(ψ, u) := −
(

3

2
+
N

β2

)

Nψ − ψ +
1

2
+
N

β2
(1 − u) . (7.36)

The resulting observer is the scalar equation

˙̂χ =

(

3

2
+
N

β2

)

χ̂− 1

2
(χ̂−Nψ + 1)3 + %̄(ψ, u)

φ̂ = χ̂−Nψ . (7.37)

For its implementation, the LMI (5.34) is satisfied by selecting N such that

k := −
(

3

2
+
N

β2

)

> 0 . (7.38)

To prove the ISS property (7.17) for the observer error eφ = φ − φ̂, we employ the

ISS-Lyapunov function Ve = e2φ, and evaluate its derivative for

ėφ = −keφ − 1

2
(a3 − b3 + 6aR) , (7.39)

where a := χ − Nψ + 1 and b = χ̂ −Nψ + 1. Employing the inequality (5.47), and

substituting a− b = eφ, we get

V̇e ≤ −2ke2φ + 12R2 , (7.40)
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from which |eφ| ≥
√

6.1
k
|R| implies V̇e ≤ −0.03ke2φ and, hence, the ISS property (7.17)

holds with the linear gain

ρeµ(·) =

√

6.1

k
(·). (7.41)

Clearly, the gain ρeµ(·) can be rendered as small as desired by making k sufficiently

large with a choice of N in (7.38).

We are now ready to design a control law as in Theorem 7.1. Noting that (7.31)-

(7.32) is in strict feedback form, we apply one step of observer backstepping. For ψ,

we design the virtual control law α0 = c1φ̂. Denoting

ω := ψ − c1φ̂ = ψ − c1φ+ c1eφ, (7.42)

we rewrite (7.31) as

φ̇ = −c1φ− 3

2
φ2 − 1

2
φ3 − 3φR− ω − 3R+ c1eφ . (7.43)

The substitution of (7.37) in (7.42) yields ω = (1 + Nc1)ψ − c1χ̂, and, from (7.32)

and (7.37),

ω̇ =
1 +Nc1
β2

φ+
1

β2
(1 − u) + Γ(φ̂, ψ) , (7.44)

where Γ(φ̂, ψ) := c1ψ + c1kφ̂+ c1
2 (φ̂+ 1)3 − c1

2 . Then, the control law

u = 1 + (1 +Nc1)φ̂+ β2(c2ω + Γ(φ̂, ψ)) (7.45)

is implementable using the signals ψ and φ̂, and results in

ω̇ = −c2ω +
1 +Nc1
β2

eφ. (7.46)

The remaining task is to select the design parameters c1 and c2 such that (7.21)

and (7.22) are satisfied. For the ISS-Lyapunov function W (φ, ω) := 1
2φ

2 + 1
2ω

2, the

inequalities − 3
2φ

3 ≤ 9
8φ

2 + 1
2φ

4, −φω ≤ 1
2φ

2 + 1
2ω

2, −3φR ≤ 9
4φ

2 + R2, −3φ2R ≤ 0

(because R(t) ≥ 0), c1φeφ ≤ c1
2 φ

2 + c1
2 e

2
φ, and 1+Nc1

β2 ωeφ ≤ (1+Nc1)2

2β4c1
ω2 + c1

2 e
2
φ, yield

Ẇ ≤ −
(

c1
2

− 31

8

)

φ2 −
(

c2 −
1

2
− (1 +Nc1)

2

2β4c1

)

ω2 +R2 + c1e
2
φ . (7.47)

We let c > 0, and select c1 and c2 to satisfy
(

c1
2

− 31

8

)

> c,

(

c2 −
1

2
− (1 +Nc1)

2

2β4c1

)

> c, (7.48)
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so that

Ẇ ≤ −c(φ2 + ω2) +R2 + (2c +
31

4
)e2φ , (7.49)

from which (7.22) follows for x = (φ, ψ). For h(x) = φ and µ = R, we now compute

the gains ρhµ(·) and ρhe(·) in (7.21). Using the fact that for each constant θ > 0,

a+ b ≤ max
{

(1 + θ−1)a, (1 + θ)b
}

for all a, b ≥ 0, we obtain

Ẇ ≤ −c(φ2 + ω2) +R2 + (2c+
31

4
)e2φ (7.50)

≤ −2cW + max

{

(1 + θ−1)R2, (1 + θ)(2c+
31

4
)e2φ

}

,

from which it follows that

W ≥ max

{

(1 + θ−1)

1.9c
R2,

(1 + θ)

1.9c
(2c +

31

4
)e2φ

}

⇒ Ẇ ≤ −0.1cW . (7.51)

Then, (7.21) follows because |φ| ≤
√

2W , and the gains are

ρhµ(·) =

√

(1 + θ−1)

0.95c
(·) , ρhe(·) =

√

(1 + θ)

(

2

0.95
+

31

3.8c

)

(·) . (7.52)

Using (7.34), (7.41) and (7.52), the inner and outer loop small-gain conditions, (7.18)

and (7.19) are, respectively,

2.1

√

(1 + θ−1)

0.95c
< 1 (7.53)

2.1

√

6.1

k

√

(1 + θ)

(

2

0.95
+

31

3.8c

)

< 1 . (7.54)

Selecting c > 0 and k > 0 sufficiently large ensures that (7.53) and (7.54) hold.

Additional freedom for the selection of c and k is obtained from θ > 0, which allocates

the inner and outer loop gains.

7.4 Summary

We have discussed how the new observer developed in preceding chapters can

be incorporated in output-feedback control design with control laws that guarantee

boundedness in the presence of bounded observer errors. The combined use of the new

observer design and small-gain control design tools has led to an output-feedback de-

sign procedure, illustrated on the jet engine compressor example. Such combined use

of observer and controller design tools is a promising research direction for nonlinear

output-feedback control.
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[14] J. Eker and K.J. Åström, “A nonlinear observer for the inverted pendulum,” in

Proceedings of the 1996 IEEE International Conference on Control Applications,

Dearborn, MI, 1996.

[15] F. Esfandiari and H.K. Khalil, “Output feedback stabilization of fully lineariz-

able systems,” International Journal of Control, vol. 56, pp. 1007–1037, 1992.

[16] A.L. Fradkov, “Quadratic Lyapunov functions in the adaptive stability problem

of a linear dynamic target,” Siberian Math. Journal, pp. 341–348, 1976.
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Springer-Verlag, New York, 1997.

[86] E.D. Sontag, “Smooth stabilization implies coprime factorization,” IEEE

Transactions on Automatic Control, vol. 34, pp. 435–443, 1989.

[87] E.D. Sontag, “Further facts about input to state stabilization,” IEEE Trans-

actions on Automatic Control, vol. 35, pp. 473–476, 1990.

[88] E.D. Sontag and Y. Wang, “On characterizations of the input-to-state-stability

property,” Systems and Control Letters, vol. 24, pp. 351–359, 1995.

[89] E.D. Sontag and Y. Wang, “New characterizations of input-to-state stability,”

IEEE Transactions on Automatic Control, vol. 41, pp. 1283–1294, 1996.

[90] W. Sun, P.P. Khargonekar, and D. Shim, “Solution to the positive real control

problem for linear time-invariant systems,” IEEE Transactions on Automatic

Control, vol. 39, pp. 2034–2046, 1994.
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